High Throughput Production and Screening Strategies for Creating Advanced Biomaterials and Chemical Sensors

  • William G. Holthoff
  • Loraine T. Tan
  • Ellen L. Holthoff
  • Ellen M. Cardone
  • Frank V. Bright
Part of the Integrated Analytical Systems book series (ANASYS)


Development of new materials is needed for numerous applications in engineering, medical, and scientific arenas. In this chapter, we describe some of our research efforts that focus on developing strategies and tools for high throughput production and screening to create advanced biomaterials and chemical sensors. Using our developed tools, we are able to produce and screen a wide array of materials in a short period of time. In several current embodiments, the system can readily produce and fully screen 100–1,000 samples/day. Our developed automated systems can provide results with minimal user input, yet with better precision and accuracy in comparison to traditional manual methods.


Sensor Array Sensor Element Hybrid Class Quencher Molecule High Throughput Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work from our laboratories was generously supported by the National Science Foundation, the National Institute of Health, the Gerald A. Sterbutzel fund at UB, and the John R. Oishei Foundation.


  1. 1.
    Bastioli, C., Handbook of Biodegradable Polymers. Rapra Technology Limited: Shawbury, 2005 Google Scholar
  2. 2.
    De Jong, S. J.; Arias, E. R.; Rijkers, D. T. S.; Van Nostrum, C. F.; Kettenes-Van den Bosch, J. J.; Hennink, W. E., New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer 2000, 42, 2795–2802CrossRefGoogle Scholar
  3. 3.
    Middleton, J. C.; Tipton, A. J., Synthetic biodegradable polymers as medical devices. Medical Plastics and Biomaterials 1998, 31–38Google Scholar
  4. 4.
    Shikanov, A.; Kumar, N.; Domb, A. J., Biodegradable polymers: An update. Israel Journal of Chemistry 2005, 45, 393–399CrossRefGoogle Scholar
  5. 5.
    Albertsson, A. C.; Varma, I., Aliphatic Polyesters: Synthesis, Properties and Applications. In Degradable Aliphatic Polyesters, Albertsson, A. C., Ed. Springer: New York, 2002; Vol. 157, pp 1–40Google Scholar
  6. 6.
    Amass, W.; Amass, A.; Tighe, B., A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 1998, 47, 89–144CrossRefGoogle Scholar
  7. 7.
    Park, J. H.; Ye, M.; Park, K., Biodegradable polymers for microencapsulation of drugs. Molecules 2005, 10, 146–161CrossRefGoogle Scholar
  8. 8.
    Ikada, Y.; Tsuji, H., Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun. 1999, 21(3), 117–132CrossRefGoogle Scholar
  9. 9.
    Middleton, J. C.; Tipton, A. J., Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335–2346CrossRefGoogle Scholar
  10. 10.
    Milella, E.; Barra, G.; Ramires, P. A.; Leo, G.; Aversa, P.; Romito, A., Poly(l-lactide)acid/ alginate composite membranes for guided tissue regeneration. J. Biomed. Mater. Res. 2001, 57, 248–257CrossRefGoogle Scholar
  11. 11.
    Chen, C.-C.; Chueh, J.-Y.; Tseng, H.; Huang, H.-M.; Lee, S.-Y., Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 2003, 24, 1167–1173CrossRefGoogle Scholar
  12. 12.
    Gunatillake, P.; Adhikari, R., Biodegradable synthetic polymers for tissue engineering. Euro. Cells Mater. 2003, 5, 1–16Google Scholar
  13. 13.
    Daniels, A. U.; Chang, M. K. O.; Andriano, K. P., Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J. Appl. Biomat. 1990, 1, 57–78CrossRefGoogle Scholar
  14. 14.
    Utracki, L. A., Commercial Polymer Blends. 1st ed.; Springer,: New York, 1998 Google Scholar
  15. 15.
    Ljungberg, N.; Wesslen, B., Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 2005, 6(3), 1789–1796CrossRefGoogle Scholar
  16. 16.
    Brinker, C. J.; Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic: Boston, 1990; p xiv, p. 908Google Scholar
  17. 17.
    Kato, M.; Sakai-Kato, K.; Toyo’oka, T., Silica sol–gel monolithic materials and their use in a variety of applications. Journal of separation science 2005, 28, 1893–1908CrossRefGoogle Scholar
  18. 18.
    Tang, Y.; Tehan, E. C.; Tao, Z.; Bright, F. V., Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability. Analytical Chemistry 2003, 75(10), 2407–2413CrossRefGoogle Scholar
  19. 19.
    McEvoy, A. K.; McDonagh, C.; MacCraith, B. D., Analyst 1996, 121, 785–788CrossRefGoogle Scholar
  20. 20.
    Dunbar, R. A.; Jordan, J. D.; Bright, F. V., Development of chemical sensing platforms based on sol–gel-derived thin films: origin of film age vs. performance trade-offs. Analytical Chemistry 1996, 68, 604–610CrossRefGoogle Scholar
  21. 21.
    Rupcich, N.; Goldstein, A.; Brennan, J. D., Optimization of sol–gel formulations and surface treatments for the development of pin-printed protein microarrays. Chemistry of Material 2003, 15(9), 1803–1811CrossRefGoogle Scholar
  22. 22.
    Ingersoll, C. M.; Bright, F. V., Using sol–gel-based platforms for chemical sensors. CHEMTECH 1997, 27, 26–31Google Scholar
  23. 23.
    McDonagh, C.; MacCraith, B. D.; McEvoy, A. K., Tailoring of sol–gel films for optical sensing of oxygen in gas and aqueous phase. Analytical Chemistry 1998, 70(1), 45–50CrossRefGoogle Scholar
  24. 24.
    Lev, O.; Tsionsky, M.; Rabinovich, L.; Glezer, V.; Sampath, S.; Rankrator, I.; Gun, J., Analytical Chemistry 1995, 67, 22A–30ACrossRefGoogle Scholar
  25. 25.
    Collinson, M. M.; Howells, A. R., Sol gel and electrochemistry: Research at the intersection. Analytical Chemistry 2000, 72(21), 702A–709ACrossRefGoogle Scholar
  26. 26.
    Schottner, G., Hybrid sol–gel-derived polymers: applications of multifunctional materials. Chemistry of Materials 2001, 13, 3422–3435CrossRefGoogle Scholar
  27. 27.
    Maruszewski, K.; W. Strek, M. J.; Ucyk, A., Technology and applications of sol gel materials. Radiation Effects and Defects in Solids 2003, 158, 439–450CrossRefGoogle Scholar
  28. 28.
    Ciriminna, R.; Pagliaro, M., Catalysis by sol–gels: An advanced technology for organic chemistry. Current Organic Chemistry 2004, 8, 1851–1862CrossRefGoogle Scholar
  29. 29.
    Mahltig, B.; Haufe, H.; Bottcher, H., Functionalisation of textiles by inorganic sol–gel coatings. Journal of Materials Chemistry 2005, 15, 4385–4398CrossRefGoogle Scholar
  30. 30.
    Sanchez, C.; Julian, B.; Belleville, P.; Popall, M., Applications of hybrid organic-inorganic nanocomposites. Journal of Materials Chemistry 2005, 15, 3559–3592CrossRefGoogle Scholar
  31. 31.
    Innocenzi, P.; Lebeau, B., Organic-inorganic hybrid materials for non-linear optics. Journal of Materials Chemistry 2005, 15, 3821–3831CrossRefGoogle Scholar
  32. 32.
    Ogoshi, T.; Chujo, Y., Organic-inorganic polymer hybrids prepared by the sol gel method. Composite Interfaces 2005, 11, 539–566CrossRefGoogle Scholar
  33. 33.
    Avnir, D.; Coradin, T.; Lev, O.; Livage, J., Recent bio-applications of sol–gel materials. Journal of Materials Chemistry 2006, 16, 1013–1030CrossRefGoogle Scholar
  34. 34.
    Pagliaro, M.; Ciriminna, R.; Man, M. W. C.; Campestrini, S., Better chemistry through ceramics: the physical basis of the outstanding chemistry of ORMOSIL. Journal of physical chemistry B 2006, 110, 1976–1988CrossRefGoogle Scholar
  35. 35.
    Park, T. G.; Cohen, S.; Langer, R., Poly (l-lactic acid)/Pluronic blends: Characterization of phase separation behavior, degradation, and morphology and use as protein-releasing matrices. Macromolecules 1992, 25, 116–122CrossRefGoogle Scholar
  36. 36.
    Langer, R.; Chasin, M., Biodegradable Polymers as Drug Delivery Systems. Marcel Dekker: New York, NY, 1990 Google Scholar
  37. 37.
    Gombotz, W. R.; Pettit, D. K., Biodegradable polymers for protein and peptide drug delivery. Bioconjugate Chem. 1995, 6, 332–351CrossRefGoogle Scholar
  38. 38.
    Li, J. K.; Wang, N.; Wu, X. S., A novel biodegradable system based on gelatin nanoparticles and poly(lactic-co-glycolic acid) microspheres for protein and peptide drug delivery. Journal of Pharmaceutical Sciences 1997, 86(8), 891–895CrossRefGoogle Scholar
  39. 39.
    Chen, S., Piper, R., Webster, D., Singh, J., Triblock copolymers: synthesis, characterization, and delivery of a model protein. International Journal of Pharmaceutics 2005, 288, 207–218CrossRefGoogle Scholar
  40. 40.
    Collinson, M. M., Recent trends in analytical applications of organically modified silicate materials. TrAC, Trends in Analytical Chemistry 2002, 21(1), 30–38CrossRefGoogle Scholar
  41. 41.
    Livage, J., Biological applications of sol–gel glasses. In Sol-Gel Technologies for Glass Producers and Users, Aegerter, M. A.; Mennig, M., Eds. Springer: New York, 2004; pp 399–402Google Scholar
  42. 42.
    MacCraith, B. D.; McDonagh, C., Optical chemical sensors. In Sol-Gel Technologies for Glass Producers and Users, Aegerter, M. A.; Mennig, M., Eds. Springer: New York, 2004; pp 313–320Google Scholar
  43. 43.
    Rickus, J. L.; Dunn, B.; Zink, J. I., Optically based sol–gel biosensor materials. Opt. Biosens. 2002, 427–456Google Scholar
  44. 44.
    Pandey, S.; Baker, G. A.; Kane, M. A.; Bonzagni, N. J.; Bright, F. V., On the microenvironments surrounding dansyl sequestered within class I and II xerogels. Chemistry of Materials 2000, 12, (12), 3547–3551CrossRefGoogle Scholar
  45. 45.
    Narang, U.; Jordan, J. D.; Bright, F. V.; Prasad, P. N., Probing the cybotactic region of PRODAN in tetramethylorthosilicate-derived sol–gels. Journal of Physical Chemistry 1994, 98(33), 8101–8107CrossRefGoogle Scholar
  46. 46.
    Narang, U.; Wang, R.; Prasad, P. N.; Bright, F. V., Effects of aging on the dynamics of rhodamine 6G in tetramethyl orthosilicate-derived sol–gels. Journal of Physical Chemistry 1994, 98(1), 17–22CrossRefGoogle Scholar
  47. 47.
    Jordan, J. D.; Dunbar, R. A.; Bright, F. V., Aerosol-generated sol–gel-derived thin films as biosensing platforms. Analytica Chimica Acta 1996, 332(1), 83–91CrossRefGoogle Scholar
  48. 48.
    Jordan, J. D.; Dunbar, R. A.; Hook, D. J.; Zhuang, H.; Gardella, J. A., Jr.; Colon, L. A.; Bright, F. V., Production, characterization and utilization of aerosol-deposited sol–gel-derived films. Chemistry of Materials 1998, 10(4), 1041–1051CrossRefGoogle Scholar
  49. 49.
    Bonzagni, N. J.; Baker, G. A.; Pandey, S.; Niemeyer, E. D.; Bright, F. V., On the origin of the heterogeneous emission from pyrene sequestered within tetramethylorthosilicate-based xerogels: a decay-associated spectra and O2 quenching study. Journal of Sol-Gel Science and Technology 2000, 17(1), 83–90CrossRefGoogle Scholar
  50. 50.
    Bukowski, R. M.; Ciriminna, R.; Pagliaro, M.; Bright, F. V., High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)3]2+. Analytical Chemistry 2005, 77(8), 2670–2672CrossRefGoogle Scholar
  51. 51.
    Bukowski, R. M.; Davenport, M. D.; Titus, A. H.; Bright, F. V., O2-responsive chemical sensors based on hybrid xerogels that contain fluorinated precursors. Applied spectroscopy 2006, 60(9), 951–957CrossRefGoogle Scholar
  52. 52.
    Tao, Z.; Tehan, E. C.; Tang, Y.; Bright, F. V., Stable sensors with tunable sensitivities based on class II xerogels. Analytical Chemistry 2006, 78(6), 1939–1945CrossRefGoogle Scholar
  53. 53.
    Shughart, E. L.; Ahsan, K.; Detty, M. R.; Bright, F. V., Site selectively templated and tagged xerogels for chemical sensors. Analytical Chemistry 2006, 78(9), 3165–3170CrossRefGoogle Scholar
  54. 54.
    Lochmuller, C. H.; Wenzel, T. J., Spectroscopic studies of pyrene at silica interfaces. Journal of Physical Chemistry 1990, 94(10), 4230–4235CrossRefGoogle Scholar
  55. 55.
    Chambers, R.; Haruvy, Y.; Fox, M. A., Excited-state dynamics in the structural characterization of solid alkyltrimethoxysilane-derived Sol-Gel films and glasses containing bound or unbound chromophores. Chemistry of Materials 1994, 6(8), 1351–1357CrossRefGoogle Scholar
  56. 56.
    Brennan, J. D.; Hartman, J. S.; Ilnicki, E. I.; Rakic, M., Fluorescence and NMR characterization and biomolecule entrapment studies of sol–gel-derived organic-inorganic composite materials formed by sonication of precursors. Chemistry of Materials 1999, 11(7), 1853–1864CrossRefGoogle Scholar
  57. 57.
    Goring, G. L. G.; Brennan, J. D., Fluorescence and physical characterization of sol–gel-derived nanocomposite films suitable for the entrapment of biomolecules. Journal of Materials Chemistry 2002, 12(12), 3400–3406CrossRefGoogle Scholar
  58. 58.
    Nishida, F.; McKiernan, J. M.; Dunn, B.; Zink, J. I.; Brinker, C. J.; Hurd, A. J., In situ fluorescence probing of the chemical changes during sol–gel thin film formation. Journal of the American Ceramic Society 1995, 78(6), 1640–1648CrossRefGoogle Scholar
  59. 59.
    Brennan, J. D., Using intrinsic fluorescence to investigate proteins entrapped in sol–gel derived materials. Applied Spectroscopy 1999, 53(3), 106A–121ACrossRefGoogle Scholar
  60. 60.
    Flora, K. K.; Dabrowski, M. A.; Musson, S. P.; Brennan, J. D., The effect of preparation and aging conditions on the internal environment of sol–gel derived materials as probed by 7-azaindole and pyranine fluorescence. Canadian Journal of Chemistry 1999, 77(10), 1617–1625CrossRefGoogle Scholar
  61. 61.
    Huang, M. H.; Soyez, H. M.; Dunn, B. S.; Zink, J. I., In situ fluorescence probing of molecular mobility and chemical changes during formation of dip-coated Sol-gel silica thin films. Chemistry of Materials 2000, 12(1), 231–235CrossRefGoogle Scholar
  62. 62.
    Flora, K. K.; Brennan, J. D., Characterization of the microenvironments of PRODAN entrapped in tetraethyl orthosilicate derived glasses. Journal of Physical Chemistry B 2001, 105(48), 12003–12010CrossRefGoogle Scholar
  63. 63.
    Keeling-Tucker, T.; Brennan, J. D., Fluorescent probes as reporters on the local structure and dynamics in sol–gel-derived nanocomposite materials. Chemistry of Materials 2001, 13(10), 3331–3350CrossRefGoogle Scholar
  64. 64.
    Tleugabulova, D.; Czardybon, W.; Brennan, J. D., Time-resolved fluorescence anisotropy in assessing side-chain and segmental motions in polyamines entrapped in sol–gel derived silica. Journal of Physical Chemistry B 2004, 108(30), 10692–10699CrossRefGoogle Scholar
  65. 65.
    Sui, X.; Lin, T.-Y.; Tleugabulova, D.; Chen, Y.; Brook, M. A.; Brennan, J. D., Monitoring the distribution of covalently tethered sugar moieties in sol–gel-based silica monoliths with fluorescence anisotropy: Implications for entrapped enzyme activity. Chemistry of Materials 2006, 18(4), 887–896CrossRefGoogle Scholar
  66. 66.
    Baker, G. A.; Pandey, S.; Maziarz, E. P., III; Bright, F. V., Toward tailored xerogel composites: local dipolarity and nanosecond dynamics within binary composites derived from tetraethyl-orthosilane and ORMOSILs, oligomers or surfactants. Journal of Sol-Gel Science and Technology 1999, 15(1), 37–48CrossRefGoogle Scholar
  67. 67.
    Baker, G. A.; Wenner, B. R.; Watkins, A. N.; Bright, F. V., Effects of processing temperature on the oxygen quenching behavior of tris(4,7′-diphenyl-1,10′-phenanthroline) ruthenium (II) sequestered within sol–gel-derived xerogel films. Journal of Sol-Gel Science and Technology 2000, 17(1), 71–82CrossRefGoogle Scholar
  68. 68.
    Tang, Y.; Tao, Z.; Bright, F. V., Sol hydrolysis and condensation time affects the sensitivity of thin film xerogel-based sensing Materials. Journal of Sol-Gel Science and Technology 2007, 42(2), 127–133CrossRefGoogle Scholar
  69. 69.
    Cho, E. J.; Tao, Z.; Tang, Y.; Tehan, E. C.; Bright, F. V.; Hicks, W. L., Jr.; Gardella, J. A., Jr.; Hard, R., Tools to rapidly produce and screen biodegradable polymer and sol–gel-derived xerogel formulations. Applied Spectroscopy 2002, 56(11), 1385–1389CrossRefGoogle Scholar
  70. 70.
    Cho, E. J.; Tao, Z.; Tang, Y.; Tehan, E. C.; Bright, F. V.; Hicks, W. L., Jr.; Gardella, J. A., Jr.; Hard, R., Tailored delivery of active keratinocyte growth-factor from biodegradable polymer formulations. Journal of Biomedical Materials Research, Part A 2003, 66A, 417–424CrossRefGoogle Scholar
  71. 71.
    Cho, E. J.; Bright, F. V., Pin-printed chemical sensor arrays for simultaneous multianalyte quantification. Analytical Chemistry 2002, 74(6), 1462–1466CrossRefGoogle Scholar
  72. 72.
    Dong, D. C.; Winnik, M., Canadian Journal of Chemistry 1984, 62, 2560–2565CrossRefGoogle Scholar
  73. 73.
    Wong, A. L.; Hunnicutt, M. L.; Harris, J. M., Analytical Chemistry 1991, 63, 1076CrossRefGoogle Scholar
  74. 74.
    Weber, G.; Farris, F. J., Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 1979, 18(14), 3075–3078CrossRefGoogle Scholar
  75. 75.
    Drake, J. M., Photophysics and cis-trans isomerization of DCM. Chemical Physics Letters 1985, 113(6), 530–534CrossRefGoogle Scholar
  76. 76.
    Tang, Y.; Tao, Z.; Bukowski, R. M.; Tehan, E. C.; Karri, S.; Titus, A. H.; Bright, F. V., Tailored xerogel-based sensor arrays and artifical neural networks yield improved O2 detection accuracy and precision. Analyst 2006, 131, 1129–1136CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • William G. Holthoff
    • 1
  • Loraine T. Tan
    • 2
  • Ellen L. Holthoff
  • Ellen M. Cardone
    • 3
  • Frank V. Bright
    • 4
  1. 1.Joint Expeditionary Forensics Program, Naval Surface Warfare Center DahlgrenAsymmetric Operations Technology Branch (Z11)DahlgrenUSA
  2. 2.Department of Chemistry, University at BuffaloThe State University of New YorkBuffaloUSA
  3. 3.Department of ChemistryThe State University of New YorkBuffaloUSA
  4. 4.Department of Chemistry, Natural Sciences Complex, University at BuffaloThe State University of New YorkBuffaloUSA

Personalised recommendations