Combinatorial Chemistry for Optical Sensing Applications

  • M. E. Díaz-García
  • G. Pina Luis
  • I. A. Rivero-Espejel
Part of the Integrated Analytical Systems book series (ANASYS)


The recent interest in combinatorial chemistry for the synthesis of selective recognition materials for optical sensing applications is presented. The preparation, screening, and applications of libraries of ligands and chemosensors against molecular species and metal ions are first considered. Included in this chapter are also the developments involving applications of combinatorial approaches to the discovery of sol–gel and acrylic-based imprinted materials for optical sensing of antibiotics and pesticides, as well as libraries of doped sol–gels for high-throughput optical sensing of oxygen. The potential of combinatorial chemistry applied to the discovery of new sensing materials is highlighted.


Boron Immobilization Cyanide Benzyl Nucleoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge support from Ministerio de Educación y Ciencia, Spain (MEC, Project #CTQ2006-14644-CO2-01), Consejo Nacional de Ciencia y Tecnología, México, (CONACYT, Grant #SEP-2004-C01-47835).


  1. 1.
    Optical Sensors. Industrial, Environmental and Diagnostic Applications. O.S.Wolfbeis (Series Ed.). Narayanaswamy, R., Wolfbeis, O.S. (Vol. Eds). 2004, SpringerGoogle Scholar
  2. 2.
    Martellucci, S., Chester, A.N., Mignani, A.G. (Eds.); Optical Sensors and Microsystems – New Concepts, Materials, Technologies, 2000, Springer, BerlinGoogle Scholar
  3. 3.
    Koppitz, M., Eis, K.; Automated medicinal chemistry; Drug Discov. Today, 2006, 11, 561–568CrossRefGoogle Scholar
  4. 4.
    Menzella, H.G., Reeves, C.D.; Combinatorial biosynthesis for drug development; Curr. Opin. Microbiol., 2007, 10, 238–245CrossRefGoogle Scholar
  5. 5.
    Potyrailo, R.A.; Polymeric sensor materials: toward an alliance of combinatorial and rational design tools? Angew.Chemie Int.Ed., 2006, 45, 702–723CrossRefGoogle Scholar
  6. 6.
    Díaz-García, M.E., Pina-Luis, G., Rivero, I.A.; Combinatorial solid-phase organic synthesis for developing materials with molecular recognition properties; Trends Anal.Chem. 2006, 25, 112–121CrossRefGoogle Scholar
  7. 7.
    Sebestyen, F., Dibo, G., Kovacs, A., Furka, A.; Chemical synthesis of peptide libraries, Bioorg. Med. Chem. Lett., 1993, 3, 413–418CrossRefGoogle Scholar
  8. 8.
    Furka, A., Sebestyen, F., Asgedom, M., Dibo, G.; General method for rapid synthesis of multicomponent peptide mixtures, Int. J. Pep. Prot. Res., 1991, 37, 487–493CrossRefGoogle Scholar
  9. 9.
    Otto, S., Furlan, R.L.E., Sanders, J.K.M.; Recent developments in dynamic combinatorial chemistry; Curr. Opin. Chem. Biol., 2002, 6, 321–327CrossRefGoogle Scholar
  10. 10.
    Corbett, P.T., Leclaire, J., Vial, L., West, K.R., Wietor, J.-L., Sanders, K.M., Otto, S.; Dynamic combinatorial chemistry; Chem. Rev. 2006, 106, 3652–3711CrossRefGoogle Scholar
  11. 11.
    Vaino, A.R., Janda, K.D.; Solid-phase organic synthesis: a critical understanding of the resin; J. Comb. Chem., 2000, 2, 579–596CrossRefGoogle Scholar
  12. 12.
    Yu, Z., Bardley, M.; Solid supports for combinatorial chemistry, Curr. Opin. Chem. Biol., 2002, 6, 347–352CrossRefGoogle Scholar
  13. 13.
    Shey, J.-Y., Sun, Ch.-M.; Liquid-phase combinatorial reaction monitoring by conventional 1H NMR spectroscopy; Tetrahedron Lett., 2002, 43, 1725–1729CrossRefGoogle Scholar
  14. 14.
    Rousselot-Pailley, P., Ede, N.J., Lippens, G.; Monitoring of solid-phase organic synthesis on macroscopic supports by high-resolution magic angle spinning NMR; J. Comb. Chem., 2001, 3 (6), 559–563CrossRefGoogle Scholar
  15. 15.
    Triolo, A., Altamura, M., Cardinali, F., Sisto, A., Maggi, C.A.; Mass spectrometry and combinatorial chemistry: a short outline; J. Mass Spectrom., 2001, 36, 1249–1259CrossRefGoogle Scholar
  16. 16.
    Stevens, S.M. Jr., Prokai-Tatrai, K., Prokai, L.; Screening combinatorial libraries for substrate preference by mass spectrometry; Anal. Chem., 2005, 77 (2), 698–701CrossRefGoogle Scholar
  17. 17.
    Gerdes, J.M., Waldmann, H.; Direct mass spectrometric monitoring of solid phase organic syntheses; J. Comb. Chem., 2003, 5, 814–820CrossRefGoogle Scholar
  18. 18.
    Yan, B., Gremlich, H.-U., Moss, S., Coppola, G.M., Sun, Q., Liu, L.; A Comparison of various FTIR and FT Raman methods: Applications in the reaction optimization stage of combinatorial chemistry; J. Comb. Chem., 1999, 1, 46–54CrossRefGoogle Scholar
  19. 19.
    Yan, B., Yan, H.; Combination of single bead FTIR and chemometrics in combinatorial chemistry: Application of the multivariate calibration method in monitoring solid-phase organic synthesis; J. Comb. Chem., 2001, 3, 78–84CrossRefGoogle Scholar
  20. 20.
    Schmid, D.G., Grosche, P., Bandel, H., Jung, G.; FTICR-Mass spectrometry for high-resolution analysis in combinatorial chemistry, Biotechnol. Bioeng., 2001, 71, 149–161CrossRefGoogle Scholar
  21. 21.
    Potyrailo, R.A., Takeuchi, I.; Role of high-throughput characterization tools in combinatorial materials science, Meas. Sci. Technol. 2005, 16, 1–4CrossRefGoogle Scholar
  22. 22.
    Ahn, Y.-H., Lee, J.-S., Chang, Y.-T.; Combinatorial rosamine library and application to in vivo glutathione probe; J. Am. Chem. Soc. 2007, 129, 4510–4511CrossRefGoogle Scholar
  23. 23.
    Potyrailo, R.A.; Analytical spectroscopic tools for high-throughput screening of combinatorial materials libraries, Trends Anal. Chem., 2003, 22, 374–384CrossRefGoogle Scholar
  24. 24.
    Kenseth, J.K., Coldiron, S.J.; High-throughput characterization and quality control of small-molecule combinatorial libraries; Curr.Opin. Chem. Biol., 2004, 8, 418–423CrossRefGoogle Scholar
  25. 25.
    de Silva, A.P, Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E.; Signaling recognition events with fluorescent sensors and switches; Chem. Rev., 1997, 97, 1515–1565CrossRefGoogle Scholar
  26. 26.
    Czarnik, A.W., (Ed.); Fluorescent Chemosensors for Ion and Molecule Recognition; A.C.S. Washington, 1992Google Scholar
  27. 27.
    Patterson, S., Smith, B.D., Taylor, R.E.; Tuning the affinity of a synthetic sialic acid receptor using combinatorial chemistry; Tetrahedron Lett., 1998, 39, 3111–3114CrossRefGoogle Scholar
  28. 28.
    Gordon, E.M., Gallop, M.A., Patel, D.V.; Strategy and tactics in combinatorial organic synthesis. Applications to drug discovery; Acc. Chem. Res., 1996, 29, 144–154CrossRefGoogle Scholar
  29. 29.
    E. Vélez-López, “Solid phase organic synthesis of chemical sensors”, PhD Dissertation, Technological Institute of Tijuana, Baja California, Mexico, 2004Google Scholar
  30. 30.
    Badía, R., Pina Luis, G., Granda Valdés, M., Díaz-García, M.E.; Selective fluorescent chemosensor for fructose; Analyst, 1998, 123, 155–158CrossRefGoogle Scholar
  31. 31.
    Vélez-López, E., Pina-Luis, G., Suarez Rodríguez, J.L., Díaz-García, M.E., Rivero, I.A.; Immobilisation of a boronic receptor for fructose recognition: influence on the photoinduced electron transfer process, Sens. Actuators, B 2003, 90, 256–263CrossRefGoogle Scholar
  32. 32.
    Wang, S., Chang, Y.-T.; Combinatorial synthesis of benzimidazolium dyes and its diversity directed application toward GTP-selective fluorescent chemosensors, J. Am. Chem. Soc. 2006, 128, 10380–10381CrossRefGoogle Scholar
  33. 33.
    Buryak, A., Severin, K.; Easy to optimize: dynamic combinatorial libraries of metal-dye complexes as flexible sensors for tripeptides; J. Comb. Chem. 2006, 8, 540–543CrossRefGoogle Scholar
  34. 34.
    Rivero, I.A., Gonzalez, T., Diaz-Garcia, M.E.; Synthesis of Metallothionein-mimic decapeptides with heavy atom signaling; Comb. Chem. High Throughput Screen., 2006, 9, 535–544CrossRefGoogle Scholar
  35. 35.
    Castillo, M., Rivero, I.A.; Combinatorial synthesis of fluorescent trialkylphosphine sulfides as sensor materials for metal ions of environmental concern; Arkivoc, 2003, (xi), 193–202Google Scholar
  36. 36.
    Castillo, M., Pina-Luis, G., Díaz-García, M.E., Rivero, I.A.; Solid-phase organic synthesis of sensing sorbent materials for copper and lead recovery; J. Braz. Chem. Soc., 2005, 16, 412–417CrossRefGoogle Scholar
  37. 37.
    Rivero, I.A., Gonzalez, T., Pina-Luis, G., Dıaz-Garcıa, M.E.; Library preparation of derivatives of 1,4,10,13-tetraoxa-7,16-diaza-cycloctadecane and their fluorescence behavior for signaling purposes; J. Comb. Chem. 2005, 7, 46–53CrossRefGoogle Scholar
  38. 38.
    Marshall, G.R., Amruta Reddy, P., Schall, O.F., Naik, A., Beusen, D.D., Ye, Y., Slomczynska, U.; Combinatorial chemistry of metal-binding ligands. Chapter 5 in Advances in Supramolecular Chemistry Vol.8, pp. 174–243, 2002, Cerberus Press, FLGoogle Scholar
  39. 39.
    Hanrahan, J.W., Tabcharni, J.A., Becq, F., Matthews, C.J., Augustinas, O., Jensen, T.J., Chang, X.-B, Riordan, J.R.; In Ion Channels and Genetic Diseases, D.C.Dawson, R.A.Fritzel (Eds.), 1995, Rockefeller University Press, New YorkGoogle Scholar
  40. 40.
    Granda Valdés, M., Díaz-García, M.E.; Determination of thiocyanate within physiological fluids and environmental samples. Current practice and future trends; Crit. Rev. Anal. Chem., 2004, 34,1–13CrossRefGoogle Scholar
  41. 41.
    Ramström, O., Ye, L., Krook, M., Mosbach, K.; Screening of a combinatorial steroid library using molecularly imprinted polymers; Anal. Comm., 1998, 35, 9–11CrossRefGoogle Scholar
  42. 42.
    Lanza, F., Sellergren B.; Method for synthesis and screening of large groups of molecularly imprinted polymers; Anal. Chem. 1999, 71, 2092–2096CrossRefGoogle Scholar
  43. 43.
    Lanza F., Hall. A.J., Sellergren,B., Bereczki, A., Horvai, G., Bayoudh, S., Cormack, P.A.G., Sherrington, D.C.; Development of a semiautomated procedure for the synthesis and evaluation of molecularly imprinted polymers applied to the search for functional monomers for phenytoin and nifedipine, Anal. Chim. Acta, 2001, 435, 91–106CrossRefGoogle Scholar
  44. 44.
    Takeuchi, T., Fukuma, D., Matsui, J.; Combinatorial molecular imprinting: an approach to synthetic polymer receptors; Anal. Chem., 1999, 71, 285–290CrossRefGoogle Scholar
  45. 45.
    Cederfur, J., Pei, Y., Zihui, M., Kempe, M.; Synthesis and screening of a molecularly imprinted polymer library targeted for Penicillin G; J. Comb. Chem., 2003, 5, 67–72CrossRefGoogle Scholar
  46. 46.
    Piletsky, S., Turner, A., (Eds); Molecular Imprinting of Polymers. III Series: Biotechnology Intelligence Unit. Landes Bioscience. Georgetown, Texas, 2006Google Scholar
  47. 47.
    El-Toufaili, F.A., Visnjevski, A., Brüggemann, O.; Screening combinatorial libraries of molecularly imprinted polymer films casted on membranes in single-use membrane modules; J. Chromatogr., B, 2004, 804, 135–139CrossRefGoogle Scholar
  48. 48.
    Díaz-García, M.E., Badía, R.; Molecular imprinting in sol–gel materials: recent developments and applications; Microchim. Acta, 2004, 274,1–18Google Scholar
  49. 49.
    Marx, S., Liron, Z.; Molecular imprinting in thin films of organic-inorganic hybrid sol–gel and acrylic polymers; Chem. Mater., 2001, 13, 3624–3630CrossRefGoogle Scholar
  50. 50.
    Cummins, W., Duggan, P., McLoughlin, P.; A comparative study of the potential of acrylic and sol–gel polymers for molecular imprinting; Anal. Chim. Acta, 2005, 542, 52–60CrossRefGoogle Scholar
  51. 51.
    The European Agency for the Evaluation of Medicinal Products; Veterinary Medicines and Information Technology. EMEA/MRL/750/00-FINAL, April, 2001Google Scholar
  52. 52.
    Guardia, L., Díaz-García, M.E.; unpublished resultsGoogle Scholar
  53. 53.
    Guardia, L., Badía Laíño, R., Díaz García, M.E.; Molecular imprinted sol–gels for nafcillin determination in milk-based products; J. Agric. Food Chem., 2007, 55, 566–570CrossRefGoogle Scholar
  54. 54.
    Zhang, H., Hoogenboom, R., Meier, M.A.R., Schubert, U.S.; Combinatorial and high-throughput approaches in polymer science; Meas. Sci. Technol., 2005, 16, 203–211CrossRefGoogle Scholar
  55. 55.
    Batra, D., Shea, K.J.; Combinatorial methods in molecular imprinting, Curr. Opin. Chem. Biol., 2003, 7, 434–442CrossRefGoogle Scholar
  56. 56.
    Kohna, J., Welshb, W.J., Knight, D.; A new approach to the rationale discovery of polymeric biomaterials; Biomaterials, 2007, 28, 4171–4177CrossRefGoogle Scholar
  57. 57.
    Tang, Y., Tao, Z., Bukowski, R.M., Tehan, E.C., Karri, S., Titus, A.H., Bright, F.V.; Tailored xerogel-based sensor arrays and artificial neural networks yield improved O2 detection accuracy and precision; Analyst, 2006, 131, 1129–1136CrossRefGoogle Scholar
  58. 58.
    Dickinson, T.A., Walt, D.R., White, J., Kauer, J.S.; Generating sensor diversity through combinatorial polymer synthesis; Anal. Chem. 1997, 69, 3413–3418CrossRefGoogle Scholar
  59. 59.
    Apostolidis, A., Klimant, I., Andrzejewski, D., Wolfbeis, O.S.; A combinatorial approach for development of materials for optical sensing of gases; J. Comb. Chem., 2004, 6, 325–331CrossRefGoogle Scholar
  60. 60.
    Samaniego Zamorano, S.; Combinatorial chemistry applied to the synthesis of luminescent sol–gel materials for high-throughput oxygen sensing; MsThesis. University of Oviedo, 2005 Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • M. E. Díaz-García
    • 1
  • G. Pina Luis
    • 1
  • I. A. Rivero-Espejel
    • 1
  1. 1.Department of Physical and Analytical ChemistryUniversity of OviedoSpain

Personalised recommendations