Combinatorial Development of Chemosensitive Conductive Polymers

  • Vladimir M. Mirsky
Part of the Integrated Analytical Systems book series (ANASYS)


Conductive polymers are established materials for development of chemical and biological sensors. Properties of these polymers are influenced by a number of different physical and chemical factors. Application of combinatorial and high-throughput techniques to development and optimization of chemo and biosensors is reviewed. Methods for addressable synthesis of conductive polymers and protocols for comprehensive description of chemosensitive properties are discussed.


Conductive Polymer Prussian Blue Electrode Array Langmuir Adsorption Isotherm Phenylboronic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is grateful to R.A. Potyrailo for interesting and motivating discussions on applications of high-throughput methodologies in material science and for reading and critical comments of the present manuscript. The described technique of combinatorial electropolymerization with electrical addressing and its applications were realized in the frame of the projects Kombisense (supported by the German Ministry for Science and Education) and short-term fellowships of the German Science Foundation for V. Kulikov and T. Delaney. The main contribution into practical realization of the concept has been done by V. Kulikov during his Ph.D work. An assistance of Q. Hao, T. Delaney, C. Swart, and Th. Hirsch in the performing of particular tasks of the work and fruitful advices of O. S. Wolfbeis, partners of the Kombisense-project, as well as N. Roznyatovskaya and U. Lange are acknowledged.


  1. 1.
    Wallace, G.; Kane-Maguire, L. Conductive polymers. Encyclopedia Biomater. Biomed. Eng. 2004, 1, 374–383Google Scholar
  2. 2.
    Hansen, G. What we dreamt as children-how conductive polymers are bringing our dreams to reality. J. Adv. Mater. 2006, 38, 68–74Google Scholar
  3. 3.
    Bai, H.; Shi, G. Gas sensors based on conducting polymers. Sensors 2007, 7, 267–307CrossRefGoogle Scholar
  4. 4.
    Malhotra, B. D.; Chaubey, A.; Singh, S. P. Prospects of conducting polymers in biosensors. Anal. Chimica Acta 2006, 578, 59–74CrossRefGoogle Scholar
  5. 5.
    Samoylov, A. V.; Mirsky, V. M.; Hao, Q.; Swart, C.; Shirshov, Y. M.; Wolfbeis, O. S. Nanometer-thick SPR sensor for gaseous HCl. Sens. Actuators. 2005, B106, 369–372Google Scholar
  6. 6.
    Hao, Q.; Wang, X.; Lu, L.; Yang, X.; Mirsky, V. M. Electropolymerized multilayer conducting polymers with response to gaseous hydrogen chloride. Macromolecul. Rapid Commun. 2005, 26, 1099–1103CrossRefGoogle Scholar
  7. 7.
    Pringsheim, E.; Zimin, D.; Wolfbeis, O. S. Fluorescent beads coated with polyaniline. A novel nanomaterial for optical sensing of pH. Adv. Mater. 2001, 13, 819–822CrossRefGoogle Scholar
  8. 8.
    Krondak, M.; Broncova, G.; Anikin, S.; Merz, A.; Mirsky, V. M. Chemosensitive properties of poly-4,4′-dialkoxy-2,2′-bipyrroles. J. Solid State Electrochem. 2006, 10, 185–191CrossRefGoogle Scholar
  9. 9.
    Lassalle, N.; Mailley, P.; Vieil, E.; Livache, T.; Roget, A.; Correia, J. P.; Abrantes, L. M. Electronically conductive polymer grafted with oligonucleotides as electrosensors of DNA Preliminary study of real time monitoring by in situ techniques. J. Electroanal. Chem. 2001, 509, 48–57CrossRefGoogle Scholar
  10. 10.
    Grosjean, L.; Cherif, B.; Mercey, E.; Roget, A.; Levy, Y.; Marche, P. N.; Villiers, M. B.; Livache, T. A polypyrrole protein microarray for antibody-antigen interaction studies using a label-free detection process. Analyt. Biochem. 2005, 347, 193–200CrossRefGoogle Scholar
  11. 11.
    Shoji, E.; Freund, M. S. Potentiometric saccharide detection based on the pKa changes of poly(aniline boronic acid). J. Am. Chem. Soc. 2002, 124, 12486–12493CrossRefGoogle Scholar
  12. 12.
    Pringsheim, E.; Terpetschnig, E.; Piletsky, S. A.; Wolfbeis, O. S. A polyaniline with near-infrared optical response to saccharides. Adv. Mater. 1999, 11, 865–868CrossRefGoogle Scholar
  13. 13.
    Marsella, M. J.; Swager, T. M. Designing conducting polymer-based sensors: selective ionochromic response in crown ether-containing polythiophenes. J. Am. Chem. Soc. 1993, 115, 12214–12215CrossRefGoogle Scholar
  14. 14.
    Fabre, B.; Simonet, J. Electroactive polymers containing crown ether or polyether ligands as cation-responsive materials. Coord. Chem. Rev. 1998, 178–180 (Pt. 2), 1211–1250CrossRefGoogle Scholar
  15. 15.
    Pandey, P. C.; Prakash, R. Polyindole modified potassium ion-sensor using dibenzo-18-crown-6 mediated PVC matrix membrane. Sens. Actuators. 1998, B46, 61–65Google Scholar
  16. 16.
    Kaneto, K.; Bidan, G. Electrochemical recognition and immobilization of uranyl ions by polypyrrole film doped with calix[6]arene. Thin Solid Films. 1998, 331, 272–278CrossRefGoogle Scholar
  17. 17.
    Marsella, M. J.; Newland, R. J.; Carroll, P. J.; Swager, T. M. Ionoresistivity as a highly sensitive sensory probe: investigations of polythiophenes functionalized with calix[4]arene-based ion receptors. J. Am. Chem. Soc. 1995, 117, 9842–9848CrossRefGoogle Scholar
  18. 18.
    Pandey, P. C.; Singh, G.; Srivastava, P. K. Electrochemical synthesis of tetraphenylborate doped polypyrrole and its applications in designing a novel zinc and potassium ion sensor. Electroanalysis. 2002, 14, 427–432CrossRefGoogle Scholar
  19. 19.
    Ulyanova, Y., V; Blackwell, A. E.; Minteer, S. D. Poly(methylene green) employed as molecularly imprinted polymer matrix for electrochemical sensing. Analyst. 2006, 131, 257–261CrossRefGoogle Scholar
  20. 20.
    Deore, B.; Chen, Z.; Nagaoka, T. Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole. Anal. Chem. 2000, 72, 3989–3994CrossRefGoogle Scholar
  21. 21.
    Nicho, M. E.; Trejo, M.; Garcia-Valenzuela, A.; Saniger, J. M.; Palacios, J.; Hu, H. Polyaniline composite coatings interrogated by a nulling optical-transmittance bridge for sensing low concentrations of ammonia gas. Sens. Actuators. 2001, B76, 18–24Google Scholar
  22. 22.
    Ivanov, S.; Tsakova, V.; Mirsky, V. M. Conductometric transducing in electrocatalytical sensors: Detection of ascorbic acid. Electrochem. Commun. 2006, 8, 643–646CrossRefGoogle Scholar
  23. 23.
    Luo, X.; Killard, A. J.; Smyth, M. R. Nanocomposite and nano-porous polyaniline conducting polymers exhibit enhanced catalysis of nitrite reduction. Chemistry. 2007, 13, 2138–2143CrossRefGoogle Scholar
  24. 24.
    Komsiyska, L.; Tsakova, V. Ascorbic acid oxidation at nonmodified and copper-modified polyaniline and poly-ortho-methoxyaniline coated electrodes. Electroanalysis. 2006, 18, 807–813CrossRefGoogle Scholar
  25. 25.
    Li, X.; Ta, N.; Sun, C. Electrochemical polymerization of 1-naphthylamine and properties of poly-1-naphthylamine. Bull. Electrochem. 2005, 21, 173–177Google Scholar
  26. 26.
    Kranz, C.; Wohlschlaeger, H.; Schmidt, H. L.; Schuhmann, W. Controlled electrochemical preparation of amperometric biosensors based on conducting polymer multilayers. Electroanalysis. 1998, 10, 546–552CrossRefGoogle Scholar
  27. 27.
    Habermuller, K.; Mosbach, M.; Schuhmann, W. Electron-transfer mechanisms in amperometric biosensors. Fresenius J. Anal. Chem. 2000, 366, 560–568CrossRefGoogle Scholar
  28. 28.
    Galal, A. Electrocatalytic oxidation of some biologically important compounds at conducting polymer electrodes modified by metal complexes. J. Solid State Electrochem. 1998, 2, 7–15CrossRefGoogle Scholar
  29. 29.
    Guerrieri, A.; De Benedetto, G. E.; Palmisano, F.; Zambonin, P. G. Electrosynthesized nonconducting polymers as permselective membranes in amperometric enzyme electrodes: a glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized polypyrrole bilayer. Biosens. Bioelectron. 1998, 13, 103–112CrossRefGoogle Scholar
  30. 30.
    Waltman, R. J.; Bargon, J. Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Canad. J. Chem. 1986, 64, 76–95CrossRefGoogle Scholar
  31. 31.
    Yano, J. Electro-oxidative polymerization mechanism of polyaniline. Curr. Trends Polym. Sci. 1998, 3, 131–143Google Scholar
  32. 32.
    Sabouraud, G.; Sadki, S.; Brodie, N. The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 2000, 29, 283–293CrossRefGoogle Scholar
  33. 33.
    Kan, J.; Pan, X.; Zhou, W. Electrochemical copolymerization of aniline and o-chloroaniline. Bull. Electrochem. 2005, 21, 65–70Google Scholar
  34. 34.
    Xu, J.; Nie, G.; Zhang, S.; Han, X.; Hou, J.; Pu, S. Electrochemical copolymerization of indole and 3,4-ethylenedioxythiophene. J. Mater. Sci. 2005, 40, 2867–2873CrossRefGoogle Scholar
  35. 35.
    Nie, G.; Xu, J.; Zhang, S.; Cai, T.; Han, X. Electrochemical copolymerization of carbazole and 3-methylthiophene. J. Appl. Polym. Sci. 2006, 102, 1877–1885CrossRefGoogle Scholar
  36. 36.
    Yilmaz, F.; Sel, O.; Guner, Y.; Toppare, L.; Hepuzer, Y.; Yagci, Y. Controlled synthesis of block copolymers containing side chain thiophene units and their use in electrocopolymerization with thiophene and pyrrole. J. Macromol. Sci., Pure Appl. Chem. 2004, A41, 401–418Google Scholar
  37. 37.
    Asawapirom, U.; Guentner, R.; Forster, M.; Scherf, U. Semiconducting block copolymers-synthesis and nanostructure formation. Thin Solid Films. 2005, 477, 48–52CrossRefGoogle Scholar
  38. 38.
    Hao, Q.; Rahm, M.; Weiss, D.; Mirsky, V. M. Morphology of electropolymerized poly (N-methylaniline) films. Microchim. Acta. 2003, 143, 147–153CrossRefGoogle Scholar
  39. 39.
    Xiang, Y.; LaVan, D. Parallel microfluidic synthesis of conductive biopolymers. Proceedings of the 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications; The Institute of Electrical and Electronic Engineers, Inc.: Piscataway, 2006; p.1CrossRefGoogle Scholar
  40. 40.
    Ryabova, V.; Schulte, A.; Erichsen, T.; Schuhmann, W. Robotic sequential analysis of a library of metalloporphyrins as electrocatalysts for voltammetric nitric oxide sensors. Analyst. 2005, 130, 1245–1252.CrossRefGoogle Scholar
  41. 41.
    Erichsen, T.; Reiter, S.; Ryabova, V.; Bonsen, E. M.; Schuhmann, W.; Markle, W.; Tittel, C.; Jung, G.; Speiser, B. Combinatorial microelectrochemistry: Development and evaluation of an electrochemical robotic system. Rev. Sci. Instr. 2005, 76, 1–11CrossRefGoogle Scholar
  42. 42.
    Mirsky, V. M.; Kulikov, V. Combinatorial electropolymerization: Concept, equipment, and applications. In: High-Throughput Analysis: A Tool for Combinatorial Material Science; Potyrailo R. A., Amis E. J., Eds. Kluwer/Plenum: New York, NY, 2003; 431–446Google Scholar
  43. 43.
    Mirsky, V. M.; Kulikov, V.; Hao, Q.; Wolfbeis, O. S. Multiparameter high throughput characterization of combinatorial chemical microarrays of chemosensitive polymers. Macromol. Rap. Commun. 2004, 25, 253–258CrossRefGoogle Scholar
  44. 44.
    Kulikov, V.; Mirsky, V. M.; Delaney, T. L.; Donoval, D.; Koch, A. W.; Wolfbeis, O. S. High-throughput analysis of bulk and contact conductance of polymer layers on electrodes. Meas. Sci. Technol. 2005, 16, 95–99CrossRefGoogle Scholar
  45. 45.
    Briehn, C. A.; Schiedel, M. S.; Bonsen, E. M.; Schuhmann, W.; Bauerle, P. Single-compound libraries of organic materials: from the combinatorial synthesis of conjugated oligomers to structure-property relationships. Angew. Chemie, Intern. Ed. 2001, 40, 4680–4683CrossRefGoogle Scholar
  46. 46.
    Barbero, C.; Salavagione, H. J.; Acevedo, D. F.; Grumelli, D. E.; Garay, F.; Planes, G. A.; Morales, G. M.; Miras, M. C. Novel synthetic methods to produce functionalized conducting polymers I. Polyanilines. Electrochim. Acta. 2004, 49, 3671–3686.CrossRefGoogle Scholar
  47. 47.
    Kulikov, V.; Mirsky, V. M. Equipment for combinatorial electrochemical polymerization and high-throughput investigation of electrical properties of the synthesized polymers. Meas. Sci. Technol. 2004, 15, 49–54CrossRefGoogle Scholar
  48. 48.
    Bidan, G.; Billon, M.; Livache, T.; Mailley, P.; Roget, A. Molecular engineering and electrochemistry for the implementation of DNA chips. Act. Chimiq. 2003, 11/12, 39–46Google Scholar
  49. 49.
    Mirsky, V. M.; Kulikov, V.; Wolfbeis, O. S. Complete system for combinatorial synthesis and functional investigation of conductive polymers. PMSE Preprints. 2005, 93, 1053Google Scholar
  50. 50.
    Potyrailo, R. A.; Mirsky, V. M. Combinatorial and high-throughput development of sensing materials: The first ten years. Chem. Rev. 2008, 108, 770–813CrossRefGoogle Scholar
  51. 51.
    Wang, Q. High-throughput conductivity measurements of thin films. In: In: High-Throughput Analysis: A Tool for Combinatorial Material Science; Potyrailo R. A., Amis E. J., Eds. Kluwer/Plenum: New York, NY, 2003; 395–414.Google Scholar
  52. 52.
    Hao, Q.; Kulikov, V.; Mirsky, V. M. Investigation of contact and bulk resistance of conducting polymers by simultaneous two- and four-point technique. Sens. Actuators. 2003, B94, 352–357Google Scholar
  53. 53.
    Chakraborty, A.; Liu, X.; Parthasarathi, G.; Luo, C. An intermediate-layer lithography method for generating multiple microstructures made of different conducting polymers. Microsys. Technol. 2007, 13, 1175–1184CrossRefGoogle Scholar
  54. 54.
    Panasyuk, T. L.; Mirsky, V. M.; Piletsky, S. A.; Wolfbeis, O. S. Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors. Anal. Chem. 1999, 71 (20), 4609–4613CrossRefGoogle Scholar
  55. 55.
    Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric ion sensors based on conducting polymers. Electroanalysis. 2003, 15, 366–374CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Vladimir M. Mirsky
    • 1
  1. 1.Department of NanobiotechnologyLausitz University of Applied SciencesSenftenbergGermany

Personalised recommendations