Advertisement

Design of Selective Gas Sensors Using Combinatorial Solution Deposition of Oxide Semiconductor Films

  • Jong-Heun Lee
  • Sun-Jung Kim
  • Pyeong-Seok Cho
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

The study examined sensing behavior of multicompositional gas sensing materials prepared through combinatorial deposition of SnO2, ZnO, and WO3 sols. Selective detection of C2H5OH and CH3COCH3 in the presence of CO, C3H8, H2 and NO2 was accomplished by combinatorial manipulation of the gas sensor composition. A further tuning of the gas-sensing materials and gas-sensing temperature allowed discrimination between C2H5OH and CH3COCH3, which is a challenging issue due to their similar chemical nature. The discrimination of similar gases and selective gas detection are discussed with respect to the gas sensing mechanism. Combinatorial approach is very convenient and useful for determining an optimal composition for selective-gas detection.

Keywords

Selective Detection Sensor Array Oxide Semiconductor Ethanol Sensitivity Ethanol Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by KOSEF NRL program grant funded by the Korean government (MEST) (No.R0A-2008-000-20032-0) and by a grant from the Core Technology Development Program funded by the Ministry of Commerce, Industry and Energy (MOCIE), Republic of Korea.

References

  1. 1.
    Yamazoe, N., Review. Toward innovation of gas sensor technology, Sens. Actuators B 2005, 108, 2–14CrossRefGoogle Scholar
  2. 2.
    Park, C. O.; Akbar, S. A., Ceramics for chemical sensing, J. Mater. Sci. 2003, 38, 4611–4637CrossRefGoogle Scholar
  3. 3.
    Göpel, W.; Schierbaum, K., SnO2 sensors: current status and future prospects, Sens. Actuators B 1995, 26–27, 1–12CrossRefGoogle Scholar
  4. 4.
    Shimizu, Y.; Egashira, M., Basic aspects and challenges of semiconductor gas sensors, MRS Bull. 1999, 24, 18–24Google Scholar
  5. 5.
    Sberveglieri, G., Recent developments in semiconducting thin-film gas sensors, Sens. Actuators B 1995, 23, 103–109CrossRefGoogle Scholar
  6. 6.
    Yamazoe N., New approaches for improving semiconductive gas sensors, Sens. Actutators B 1991, 5, 7–19CrossRefGoogle Scholar
  7. 7.
    Comini, E., Review. Metal oxide nano-crystals for gas sensing, Anal. Chem. Acta. 2006, 568, 28–40CrossRefGoogle Scholar
  8. 8.
    Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-dimensional nanostructures: Synthesis, characterization, and applications, Adv. Mater. 2003, 15, 353–389CrossRefGoogle Scholar
  9. 9.
    Shimizu, Y.; Jono, A.; Hyodo, T.; Egashira, M., Preparation of large mesoporous SnO2 powder for gas sensor application, Sens. Actuators B 2005, 108, 56–61CrossRefGoogle Scholar
  10. 10.
    Carotta, M. C.; Guidi, V.; Malagù, C.; Vendemiati, B.; Zanni, A.; Martinelli, G.; Sacerdoti, M.; Licoccia, S.; Vona, M. L. D.; Traversa, E., Vanadium and tantalum-doped titanium oxide (TiTaV): a novel material for gas sensing, Sens. Actuators B 2000, 108, 89–96Google Scholar
  11. 11.
    Savage, N. O.; Akbar, S. A.; Dutta, P. K., Titanium dioxide based high temperature carbon monoxide selective sensor, Sens. Actuators B 2001, 72, 239–248CrossRefGoogle Scholar
  12. 12.
    Cho, P. -S.; Kim, K. -W.; Lee, J. -H., NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method, J. Electroceram. 2006, 17, 975–978CrossRefGoogle Scholar
  13. 13.
    Wang, Y.; Jiang, X.; Xia, Y., A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions, J. Am. Chem. Soc. 2003, 125, 16176–16177CrossRefGoogle Scholar
  14. 14.
    Kolmakov, A.; Zhang, Y.; Cheng, G.; Moskovits, M., Detection of CO and O2 using tin oxide nanowire sensors, Adv. Mater. 2003, 15, 997–1000CrossRefGoogle Scholar
  15. 15.
    Li, C., Zhang; D., Liu, X.; Han, S.; Tang, T.; Han, J.; Shou, C., In2O3 nanowires as chemical sensors, Appl. Phys. Lett. 2003, 82, 1613CrossRefGoogle Scholar
  16. 16.
    Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H., Nanotube molecular wires as chemical sensors, Science 2000, 287, 622–624CrossRefGoogle Scholar
  17. 17.
    Varghese, O. K.; Gong, D.; Paulose, M.; Ong, K. G.; Dickey, E. C.; Grimes, C. A., Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure, Adv. Mater. 2003, 15, 624–627CrossRefGoogle Scholar
  18. 18.
    Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z.; Wang, Z. L., Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett. 2002, 81, 1869–1871CrossRefGoogle Scholar
  19. 19.
    Chiorino, A.; Ghiotti, G.; Prinetto, F.; Carotta, M. C.; Gnani, D.; Marinelli, G., Preparation and characterization of SnO2 and MoOx-SnO2 nanosized powders for thick film gas sensors, Sens. Actuators B 1999, 58, 338–349CrossRefGoogle Scholar
  20. 20.
    Chakraborty, S.; Sen, A.; Maiti, H. S., Selective detection of methane and butane by temperature modulation in iron doped tin oxide sensors, Sen. Actuators B 2006, 115, 610–613CrossRefGoogle Scholar
  21. 21.
    Choi, U. -S.; Sakai, G.; Shimanoe, K.; Yamazoe, N., Sensing properties of Au-loaded SnO2-Co3O4 composites to CO and H2, Sens. Actuators B 2005, 107, 397–401CrossRefGoogle Scholar
  22. 22.
    Tamaki, J.; Shimanoe, K.; Yamada, Y.; Yamamoto, Y.; Miura, N.; Yamazoe, N., Dilute hydrogen sulfide sensing properties of CuO-SnO2 thin film prepared by low-pressure evaporation method, Sens. Actuators B 1998, 49, 121–125CrossRefGoogle Scholar
  23. 23.
    Cabot, A.; Arbiol, J.; Cornet, A.; Morante, J. R.; Chen, F.; Liu, M., Mesoporous catalytic filters for semiconducting gas sensors, Thin Solid Films 2003, 436, 64–69CrossRefGoogle Scholar
  24. 24.
    Tulliani, J. M.; Moggi, P., Development of a porous layer catalytically activated for improving gas sensor performances, Ceram. Int. 2007, 22, 1199–1203CrossRefGoogle Scholar
  25. 25.
    Ivanovskaya, M.; Kotsikau, D.; Faglia, G.; Nelli, P.; Irkaev, S., Gas-sensitive properties of thin film heterojunction structures based on Fe2O3-In2O3 nanocomposties, Sens. Actuators B 2003, 93, 422–430CrossRefGoogle Scholar
  26. 26.
    Costello, B. P. J. de L.; Ewen, R. J.; Ratcliffe, N. M.; Sivenand, P. S., Thick film organic vapour sensors based on binary mixtures, Sens. Actuators B 2003, 92, 159–166CrossRefGoogle Scholar
  27. 27.
    Hyodo, T.; Abe, A.; Shimizu, Y.; Egashira, M., Gas-sensing properties of ordered mesoporous SnO2 and effect of coatings thereof, Sens. Actuators B 2003, 93, 590–600CrossRefGoogle Scholar
  28. 28.
    Shimizu, Y.; Bartolomeo, E. D.; Traversa, E.; Gusmano, G.; Hyodo, T.; Wada, K.; Egashira, M., Effect of surface modification on NO2 sensing properties of SnO2 varistor-type sensors, Sens. Actuators B 1999, 60, 118–124CrossRefGoogle Scholar
  29. 29.
    Zhang, G. -Y.; Guo, B.; Chen, J., MCo2O4 (M = Ni, Cu, Zn) nanotubes: Template synthesis and application in gas sensors, Sens. Actuators B 2006, 114, 402–409CrossRefGoogle Scholar
  30. 30.
    Huang, J. R.; Li, G. Y.; Huang, Z. Y.; Huang, X. J.; Liu, J. H., Temperature modulation and artificial neural network evaluation for improving the CO selectivity of SnO2 gas sensor, Sens. Actuators B 2006, 114, 1059–1063CrossRefGoogle Scholar
  31. 31.
    Jandeleit, B.; Schaefer, D. J.; Powers, T. S.; Turner, H. W.; Weinberg, W. H., Combinatorial materials science and catalysis, Angew. Chem. Int. Ed. 1999, 38, 2494–2532CrossRefGoogle Scholar
  32. 32.
    Koinuma, H.; Takeuchi, I., Combinatorial solid state chemistry of inorganic materials, Nat. Mater. 2004, 3, 429–438CrossRefGoogle Scholar
  33. 33.
    Takeuchi, I.; Lauterbach J.; Fasolka, M. J., Combinatorial materials synthesis, Mater. Today 2005, 8, 18–22CrossRefGoogle Scholar
  34. 34.
    Schultz, P. G.; Xiang, X. -D., Combinatorial approaches to materials science, Curr. Opin. Solid State Mater. Sci. 1998, 3, 153–158CrossRefGoogle Scholar
  35. 35.
    Amis, E. J., Combinatorial materials science: Reaching beyond discovery, Nat. Mater. 2004, 3, 83–85CrossRefGoogle Scholar
  36. 36.
    Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater. 2006, 5, 909–913CrossRefGoogle Scholar
  37. 37.
    Ng, H. T.; Chen, B.; Koehne, J. E.; Cassell, A. M.; Li, J.; Han, J; Meyyappan, M., Growth of carbon nanotubes: a combinatorial method to study the effects of catalysts and underlayers, J. Phys. Chem. B. 2003, 107, 8484–8489CrossRefGoogle Scholar
  38. 38.
    Kim, D. K.; Maier, W. F., Combinatorial discovery of new autoreduction catalysts for the CO2 reforming of methane, J. Catal. 2006, 238, 142–152CrossRefGoogle Scholar
  39. 39.
    Potyrailo, R. A.; Lemmon, J. P.; Terry, K. L., High-throughput screening of selectivity of melt polymerization catalysts using fluorescence spectroscopy and two-wavelength fluorescence imaging, Anal. Chem. 2003, 75, 4676–4681CrossRefGoogle Scholar
  40. 40.
    Yanase, I.; Ohtaki, T.; Watanabe, M., Combinatorial study on nano-particle mixture prepared by robot system, Appl. Surf. Sci. 2002, 18, 292–299CrossRefGoogle Scholar
  41. 41.
    Wroczynski, R. J.; Rubinsztajn, M.; Potyrailo, R. A., Evaluation of process degradation of polymer formulation utilizing high-throughput preparation and analysis methods, Macromol. Rapid Commun. 2004, 25, 264–269CrossRefGoogle Scholar
  42. 42.
    Potyrailo, R. A.; Wroczynski, R. J.; Lemmon, J. P.; Flanagan, W. P.; Siclovan, O. P., Fluroescence spectroscopy and multivariate spectral descriptor analysis for high-throughput multiparameter optimization of polymerization conditions of combinatorial 96-microreactor arrays, J. Comb. Chem. 2003, 5, 8–17CrossRefGoogle Scholar
  43. 43.
    Danielson, E.; Devenney, M.; Giaquinta, D. M.; Golden, J. H.; Haushalter, R. C.; McFarland, E. W.; Poojary, D. M.; Reaves, C. M.; Weinberg, W. H.; Wu, X. D., A rare-Earth phosphor Containing one-dimensional chains identified through combinatorial methods, Science 1998, 279, 837–839CrossRefGoogle Scholar
  44. 44.
    Jiang, R.; Rong, C.; Chu, D., Combinatorial approach toward high-throughput analysis of direct methanol fuel cells, J. Comb. Chem. 2005, 7, 272–278CrossRefGoogle Scholar
  45. 45.
    Danielson, E.; Golden, J. H.; McFarland, E. W.; Reaves, C. M.; Weinberg, W. H.; Wu, X. D., A combinatorial approach to the discovery and optimization of luminescent materials, Nature 1997, 389, 944–948CrossRefGoogle Scholar
  46. 46.
    Matsumoto, Y.; Murakami, M.; Hasegawa, T.; Fukumura, T.; Kawasaki, M.; Ahmet, P.; Nakajima, K.; Chikyow, T.; Koinuma, H., Structural control and combinatorial doping of titanium dioxide thin films by laser molecular beam epitaxy, Appl. Surf. Sci. 2002, 189, 344–348CrossRefGoogle Scholar
  47. 47.
    Murakami, M.; Matsumoto, Y.; Nagano, M.; Hasegawa, T.; Kawasaki, T.; Koinuma, H., Combinatorial fabrication and characterization of ferromagnetic Ti-Co-O system, Appl. Surf. Sci. 2004, 223, 245–248CrossRefGoogle Scholar
  48. 48.
    Rende, D.; Schwarz, K.; Rabe, U.; Maier, W. F.; Arnold, W., Combinatorial synthesis of thin mixed oxide films and automated study of their piezoelectric properties, Prog. Solid State Chem. 2004, 223, 245–248Google Scholar
  49. 49.
    Cui, J.; Chu, Y. S.; Famodu O. O.; Furuya, Y.; Hattrick-Simpers, J.; James, R. D.; Ludwig, A.; Thienhaus, S.; Wuttig, M.; Zhang, Z.; Takeuchi, I, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater. 2006, 5, 286–290CrossRefGoogle Scholar
  50. 50.
    Takeuchi, I.; Famodu, O. O.; Read, J. C.; Aronova, M. A.; Chang, K. -S.; Craciunescu, C.; Lofland, S. E.; Wuttig, M.; Wellstood, F. C.; Knauss, L.; Orozco, A., Identification of novel composition of ferromagnetic shape-memory alloys using composition spreads, Nat. Mater. 2003, 2, 180184CrossRefGoogle Scholar
  51. 51.
    Frantzen, A.; Scheidtmann, J.; Frenzer, G.; Maier, W. F.; Brinz, T.; Sanders, D.; Simon, U., High-throughput method for the impedance spectroscopic characterization of resistive gas sensors, Angew. Chem. Int. Ed. 2004, 43, 752–754CrossRefGoogle Scholar
  52. 52.
    Sanders, D.; Simon, U., High-throughput gas sensing screening of surface-doped In2O3, J. Comb. Chem. 2007, 9, 53–61CrossRefGoogle Scholar
  53. 53.
    Scheidtmann, J.; Frantzen, A.; Frenzer, G.; Maier, W. F., A combinatorial technique for the search of solid state gas sensor materials, Mater. Sci. Technol. 2005, 16, 119–127Google Scholar
  54. 54.
    Aronova, M. A.; Chang, K. S.; Takeuchi, I.; Jabs, H.; Westerheim, D.; Gonzalez-Martin, A.; Kim, J.; Lewis, B., Combinatorial libraries of semiconducting gas sensors as inorganic electronic nose, Appl. Phys. Lett. 2003, 83, 1255–1257CrossRefGoogle Scholar
  55. 55.
    Mitra, P.; Maiti, H. S., A wet-chemical process to form palladium oxide sensitiser layer on thin film zinc oxide based LPG sensor, Sens. Actuators B 2004, 97, 49–58CrossRefGoogle Scholar
  56. 56.
    Lee, H. -J.; Song, J. -H.; Yoon, Y. -S.; Kim, T. -S.; Kim, K. -J.; Choi, W. -K., Enhancement of CO sensitivity of indium oxide-based semiconductor gas sensor through ultra-thin cobalt adsorption, Sens. Actuators B 2001, 79, 200–205CrossRefGoogle Scholar
  57. 57.
    Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer S.; Moskovits, M., Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles, Nano Lett. 2005, 5, 667–673CrossRefGoogle Scholar
  58. 58.
    Baik, N. S.; Sakai, G.; Miura, N.; Yamazoe, N., Hydrothermally treated sol solution of tin oxide for thin film gas sensor, Sens. Actuators B 2000, 63, 74–79CrossRefGoogle Scholar
  59. 59.
    Li, H.; Wang, J.; Liu, H.; Zhang, H.; Li, X., Zinc oxide films prepared by sol—gel method, J. Cryst. Growth 2005, 275, e943–e946CrossRefGoogle Scholar
  60. 60.
    Kim, S. -J.; Cho, P. -S.; Lee, J -H.; Kang, C. -Y.; Kim, J. -S.; Yoon, S. -J., Preparation of multi-compositional gas sensing films by combinatorial solution deposition, Ceram. Int. 2008, 34, 827–831CrossRefGoogle Scholar
  61. 61.
    Nakagawa, H.; Okazaki, S.; Asakura, S.; Fukuda, K.; Akimoto, H.; Takahashi, S.; Shigemori, S., An automated car ventilation system, Sens. Actuators B 2000, 65, 133–137CrossRefGoogle Scholar
  62. 62.
    Ryabsev, S. V.; Shaposhnick, A. V.; Lukin, A. N.; Domashevskaya, E. P., Application of semiconductor gas sensors for medical diagnostics, Sens. Actuators B 1999, 59, 26–29CrossRefGoogle Scholar
  63. 63.
    Fleischer, M.; Simon, E.; Rumpel, E.; Ulmer, H.; Harbeck, M.; Wandel, M.; Fietzek, C.; Weimar, U.; Meixner, H., Detection of volatile compounds correlated to human diseases trough breath analysis with chemical sensors, Sens. Actuators B 2002, 83, 245–249CrossRefGoogle Scholar
  64. 64.
    Yu, J. -B.; Byun, H. -G.; So, M. -S.; Huh, J. -S., Analysis of diabetic patient’s breath with conducting polymer sensor array, Sens. Actuators B 2005, 108, 305–308CrossRefGoogle Scholar
  65. 65.
    Gong, H.; Wang, Y. J.; Teo, S. C.; Huang, L., Interaction between thin-film tin oxide gas sensor and five organic vapors, Sens. Actuators B 1999, 54, 232–235CrossRefGoogle Scholar
  66. 66.
    Jie, Z.; Li-Hua, H.; Shan, G.; Hui, Z.; Jing-Gui, Z., Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating, Sens. Actuators B 2006, 115, 460–464CrossRefGoogle Scholar
  67. 67.
    Liu, Y.; Koep, E.; Liu, M., A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition, Chem. Mater. 2005, 17, 3997–4000CrossRefGoogle Scholar
  68. 68.
    Chen, Y. J.; Nie, L.; Xue, X. Y.; Wang, Y. G.; Wang, T. H., Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity, Appl. Phys. Lett. 2006, 88, 083105CrossRefGoogle Scholar
  69. 69.
    Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P.; Lin, C. L., Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett. 2004, 84, 3654–3656CrossRefGoogle Scholar
  70. 70.
    Zhu, B. L.; Xie, C. S.; Wang, W. Y.; Huang, K. J.; Hu, J. H., Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2, Mater. Lett. 2004, 58, 624–629CrossRefGoogle Scholar
  71. 71.
    Li, X.; Zhang, G.; Cheng, F.; Guo, B.; Chen, J., Synthesis, characterization, and gas-sensor application of WO3 nanocuboids, J. Electrochem. Soc. 2006, 153, H133–H137CrossRefGoogle Scholar
  72. 72.
    Jing, Z.; Wang, Y.; Wu, S., Preparation and gas sensing properties of pure and doped γ-Fe2O3 by an anhydrous solvent method, Sens. Actuators B 2006, 113, 177–181CrossRefGoogle Scholar
  73. 73.
    Jing, Z.; Wu, S., Synthesis, characterization and gas sensing properties of undoped and Co-doped γ-Fe2O3-based gas sensors, Mater. Lett. 2006, 60, 952–956CrossRefGoogle Scholar
  74. 74.
    Jiang, Y.; Song, W.; Xie, C.; Wang, A.; Zeng, D.; Hu, M., Electrical conductivity and gas sensitivity to VOCs of V-doped ZnFe2O4 nanoparticles, Mater. Lett. 2006, 60, 1374–1378CrossRefGoogle Scholar
  75. 75.
    Ho, J. -J.; Fang, Y. K.; Wu, K. H.; Hsieh, W. T.; Chen, C. H.; Chen, G. S.; Ju, M. S.; Lin, J. -J.; Hwang, S. B., High sensitivity and ethanol gas sensor integrated with a solid-state heater and thermal isolation improvement structure of legal drink-drive limit detecting, Sens. Actuators B 1998, 50, 227–233CrossRefGoogle Scholar
  76. 76.
    Costello, B. P. J. de L.; Ewen, R. J.; Guernion, N.; Ratcliffe, N. M., Highly sensitive mixed oxide sensors for detection of ethanol, Sens. Actuators B 2002, 87, 207–210CrossRefGoogle Scholar
  77. 77.
    Xue, X. Y.; Chen, Y. J.; Wang, Y. G.; Wang, T. H., Synthesis and ethanol sensing properties of ZnSnO3 nanowires, Appl. Phys. Lett. 2005, 86, 233101–233103CrossRefGoogle Scholar
  78. 78.
    Reddy, C. V. G.; Cao, W.; Tan, O. K.; Zhu, W., Preparation of Fe2O3(0.9)-SnO2(0.1) by hydrazine method: application as an alcohol sensor, Sens. Actuators B 2002, 81, 170–175CrossRefGoogle Scholar
  79. 79.
    Ivanovskaya, M.; Kotsikau, D.; Faglia, G.; Nelli, P., Influence of chemical composition and structural factors of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol, Sens. Actuators B 2003, 96, 498–503CrossRefGoogle Scholar
  80. 80.
    Reddy, C. V. G.; Cao, W.; Tan, O. K.; Zhu, W.; Akbar, S. A., Selective detection ethanol vapor using xTiO2-(1-x)WO3 based sensor, Sens. Actuators B 2003, 94, 99–102CrossRefGoogle Scholar
  81. 81.
    Neri, G.; Bonavita, A.; Rizzo, G.; Galvagno, S.; Capone, S.; Siciliano, P., A study of the catalytic activity and sensitivity to different alcohols of CeO2-Fe2O3 thin films, Sens. Actuators B 2005, 111–112, 78–83CrossRefGoogle Scholar
  82. 82.
    Jinakawa, T.; Sakai, G.; Tamaki, J.; Miura, N.; Yamazoe, N., Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensor modified with acidic or basic oxides, J. Mol. Catal. Chem. 2000, 155, 193–2000CrossRefGoogle Scholar
  83. 83.
    Tsuboi, T.; Ishii, K.; Tamura, S., Themal oxidation of acetone behind reflected shock wave, in Proceedings of the 17th International Colloquium on the Synamics of Explosions and Reactive Systems, Heidelberg, Germany, July 25–30, 1990Google Scholar
  84. 84.
    Kim, K. -W.; Cho, P. -S.; Kim, S. -J.; Lee, J -H.; Kang, C. -Y.; Kim, J. -S.; Yoon, S. -J., The selective detection of C2H5OH using SnO2-ZnO thin film gas sensors, Sens. Actuators B 2007, 123, 318–324CrossRefGoogle Scholar
  85. 85.
    Kang, C. -Y.; Yoon, S. -J.; Kim, J. -S.; Lee, J -H.; Kim, K. -W.; Cho, P. -S., Multi-functional Olfactory Sensor Using LTCC and Method of Making, Korean Patent KR 10-0655367-0000: 2005 Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea UniversitySeoulKorea

Personalised recommendations