Impedometric Screening of Gas-Sensitive Inorganic Materials

Part of the Integrated Analytical Systems book series (ANASYS)


This chapter presents a setup for high throughput impedance spectroscopy (HT-IS) on gas sensing materials at different temperatures and in various gas atmospheres. Time consuming steps could be parallelized by using multielectrode substrate plates for 64 samples. Screening results for a surface doped CoTiO3/La and LnFeO3 sample plates are shown to illustrate the relevance of HT-IS in the search for new gas sensing materials.


Constant Phase Element Sample Plate Multielectrode Array Measuring Head Impedance Function 



This work was financially supported by BMBF under contract No.03 C 0305 A. M. S. gratefully acknowledges generous support by the Studienstiftung des Deutschen Volkes.


  1. 1.
    Yamazoe, N., Towards innovations of gas sensor technology, Sens. Actuators B: Chem. 2005, 108(1–2), 2–14Google Scholar
  2. 2.
    Schüth, F., Hochdurchsatzuntersuchungen. In: Chemische Technik: Prozesse und Produkte, Winnacker/Küchler, Band 2: Neue Technologien, Dittmeyer, R.; Keim, W.; Kreysa, G.; Oberholz, A., (Eds.) Wiley-VCH, Weinheim 2004 Google Scholar
  3. 3.
    Maier, W. F., Kombinatorische Chemie-Herausforderung und Chance für die Entwicklung neuer Katalysatoren und Materialien, Angew. Chem. 1999, 111(9), 1295–1296CrossRefGoogle Scholar
  4. 4.
    Franke, M. E.; Koplin, T. J.; Simon, U., Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2006, 2(1), 36–50CrossRefGoogle Scholar
  5. 5.
    Amis, E. J.; Xiang, X.-D.; Zhao, J.-C., Combinatorial Materials Science: What’s New Since Edison? MRS Bull. 2002, 4, 295–297Google Scholar
  6. 6.
    Amis, E. J., Combinatorial materials science: Reaching beyond discovery, Nat. Mater. 2004, 3, 83–84CrossRefGoogle Scholar
  7. 7.
    Xiang, X.-D.; Sun, X.; Briceño, G.; Lou, Y.; Wang, K. A.; Chang, H.; Wallace-Freedman, W. G.; Chen, S.-W.; Schultz, P. G., A combinatorial approach to material discovery, Science 1995, 268, 1738–1740CrossRefGoogle Scholar
  8. 8.
    Xiang, X.-D.; Schultz, P. G., The combinatorial synthesis and evaluation of functional materials, Physica C 1997, 282–287, 428–430CrossRefGoogle Scholar
  9. 9.
    Reichenbach, H. M.; McGinn, P. J., Combinatorial synthesis of oxide powders, J. Mater. Res. 2001, 16(4), 967–974CrossRefGoogle Scholar
  10. 10.
    Moates, F. C.; Somani, M.; Annamalai, J.; Richardson, J. T.; Luss, D.; Wilson, R. C., Infrared Thermographic screening of combinatorial libraries of heterogenous catalysts, Ind. Eng. And Chem. Res. 1996, 35, 4801–4803CrossRefGoogle Scholar
  11. 11.
    Jandeleit, B.; Schaefer, D. J.; Powers, T. S.; Turner, T. W.; Weinberg, W. H., Combinatorial materials science and catalysis, Angew. Chem. 111, 2648–2689; Angew. Chem. Int. Ed. 1999, 38, 2494–2532Google Scholar
  12. 12.
    High-Throughput Screening in Chemical Catalysis, Hagemeyer, A.; Stasser, P.; Volpe, Jr. A. F. (Eds.) Wiley-VCH, Weinheim, 2004 Google Scholar
  13. 13.
    Danielson, E.; Devenney, M.; Giaquinta, D. M.; Golden, J. H.; Haushalter, R. C.; McFarland, E. W.; Poojary, D. M.; Reaves, C. M.; Weinberg, W. H.; Wu, X. D., A rare-earth phosophor containing one-dimensional chains identified through combinatorial methods, Science 1998, 279, 837–839CrossRefGoogle Scholar
  14. 14.
    Briceño, G.; Chang, H.; Sun, X.; Schultz, P. G.; Xiang, X.-D., A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis, Science 1995, 270, 273–275CrossRefGoogle Scholar
  15. 15.
    Baeck, S. H.; Jaramillo, T. F.; Brändli, C.; McFarland, E. W., Combinatorial electrochemical synthesis and characterization of tungsten-based mixed-metal oxides, J. Comb. Chem. 2002, 4, 563–568CrossRefGoogle Scholar
  16. 16.
    Van Dover, R. B.; Schneemeyer, R. F.; Fleming, R. M., Discovery of a useful thin-film dielectric using a composition-spread approach, Nature 1998, 392, 162CrossRefGoogle Scholar
  17. 17.
    Chang, H.; Gao, C.; Takeuchi, L.; Yoo, Y.; Wang, J.; Schultz, P. G.; Xiang, D.; Sharma, P. R.; Downes, M.; Venkatesan, T., Combinatorial synthesis and high throughput evaluation of ferroelectric/ dielectric thin-film libraries for microwave applications, Appl. Phys. Lett. 1998, 72, 2185–2187CrossRefGoogle Scholar
  18. 18.
    Aronova, M. A.; Chang, K. S.; Takeuchi, I.; Jabs, H.; Westerheim, D.; Gonzalez-Martin, A.; Kim, J.; Lewis, B., Combinatorial libraries of semiconductor gas sensors as inorganic electronic noses, Appl. Phys. Lett. 2003, 83(6), 1255–1257CrossRefGoogle Scholar
  19. 19.
    Sekan, S., Combinatorial heterogeneous catalysis — a new path in an old field, Angew. Chem. Int. Ed. 2001, 40(2), 312–329CrossRefGoogle Scholar
  20. 20.
    Yoo, Y. K.; Xiang, X.-D., Combinatorial material preparation, J. Phys.: Condens. Matter 2002, 14, R49–R78CrossRefGoogle Scholar
  21. 21.
    Brinz, T., Maier, W. F.; Wolfbeis, O.; Simon, U., Gassensoren durch High-Throuput-Methoden, Nachrichten aus der Chemie 2004, 52, 247–251CrossRefGoogle Scholar
  22. 22.
    Simon, U.; Sanders, D.; Jockel, J.; Heppel, C.; Brinz, T., Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials, J. Comb. Chem. 2002, 4, 511–515CrossRefGoogle Scholar
  23. 23.
    Scheibe, C.; Obermeier, E.; Maunz, W.; Plog, C., Development of a high-temperature basic device for chemical sensors based on an IDC with on-chip heating, Sens. Acturators B 1995, 25, 584–587CrossRefGoogle Scholar
  24. 24.
    Sanders, D., Entwicklung von Gassensoren auf Indiumoxid-Basis mittels Hochdurchsatz-Impedanzspektroskopie, PhD thesis, RWTH Aachen, 2004 Google Scholar
  25. 25.
    Simon, U.; Sanders, D.; Jockel, J.; Brinz, T., Setup for high-throughput impedance screening of gas-sensing materials, J. Comb. Chem. 2005, 7(5), 682–687CrossRefGoogle Scholar
  26. 26.
    Frantzen, A.; Sanders, D.; Scheidtmann, J.; Simon, U.; Maier, W. F., A flexible database for combinatorial and high-throughput materials science, QSAR Comb. Sci. 2005, 24, 22–28CrossRefGoogle Scholar
  27. 27.
    Sanders, D.; Siemons, M.; Koplin, T.; Simon, U., Development of a high-throughput impedance spectroscopy screening system (HT-IS) for characterization of novel nanoscaled gas sensing materials, Mater. Res. Soc. Symp. Proc. 2005, 876E, R6.1.1–R6.1.6Google Scholar
  28. 28.
    Koplin, T. J.; Siemons, M.; Océn-Valéntin, C.; Sanders, D.; Simon, U., Workflow for high-throughput screening of gas sensing materials, Sensors 2006, 6, 298–307CrossRefGoogle Scholar
  29. 29.
    Siemons, M.; Simon, U., Preparation and gas sensing properties of nanocrystalline La-doped CoTiO3, Sens. Actuators B 2007, 120(1), 110–118CrossRefGoogle Scholar
  30. 30.
    Siemons, M.; Leifert, A.; Simon, U., Preparation and gas sensing characteristics of nanoparticulate p-type semiconducting LnFeO3 and LnCrO3 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), Adv. Funct. Mater. 2007, 17(13), 2189–2197CrossRefGoogle Scholar
  31. 31.
    Feldmann, C., Polyol-mediated synthesis of nanoscale functional materials, Adv. Funct. Mater. 2003, 13(2), 101–107CrossRefGoogle Scholar
  32. 32.
    Feldmann, C., Darstellung und Charakterisierung der nanoskaligen Vb-Metalloxide M2O5 (M = V, Nb, Ta), Z. Anorg. Allg. Chem. 2004, 630, 2473–2477CrossRefGoogle Scholar
  33. 33.
    Fiévet, F., Polyol Process in T. Sugimoto, Fine Particles: Synthesis, Characterization, and Mechanisms of Growth, Marcel Dekker, NY, pp. 460–496, 2000 Google Scholar
  34. 34.
    Poul, L.; Jouini, N.; Fievet, F., Layerd Hydoxide Metal Acetates (Metal = Zinc, Cobalt and Nickel): Elaboration via hydrolysis in polyol medium and comparative study, Chem. Mater. 2000, 12, 3123–3132CrossRefGoogle Scholar
  35. 35.
    Siemons, M.; Weirich, Th.; Mayer, J.; Simon, U., Preparation of nanosized perovskite-type oxides via polyol method, Z. Anorg. Allg. Chem. 2004, 630, 2083–2089CrossRefGoogle Scholar
  36. 36.
    Chu, X.; Liu, X.; Wang, G.; Meng, G., Peparation and gas sensing properties of nano-CoTiO3, Mat. Res. Bull. 1999, 34(10/11), 1789–1795CrossRefGoogle Scholar
  37. 37.
    Peña, M. A.; Fierro, J. L. G., Chemical structures and performance of perovskite oxides, Chem. Rev. 2001, 101, 1981–2017CrossRefGoogle Scholar
  38. 38.
    Yokokawa, H.; Sakai, N.; Horita, T., Yamaji, K., Recent developments in solid oxide fuel cell materials, Fuel Cells 2001, 1(2), 117–131CrossRefGoogle Scholar
  39. 39.
    Keller, N.; Mistrik, J.; Visnovsky, S.; Schmool, D. S.; Dumont, Y.; Renaudin, P.; Guyot, M.; Krishnan, R., Magneto-optical Faraday and Kerr effect of orthoferrite thin films at high temperatures, Eur. Phys. J. B 2001, 21(1), 67–73CrossRefGoogle Scholar
  40. 40.
    Aono, H.; Traversa, E.; Sakamoto, M.; Sadaoka, Y., Crystallographic characterization and NO2 gas sensing property of LnFeO3 prepared by thermal decomposition of Ln-Fe hexacyanocomplexes, Ln[Fe(CN)6n H2O, Ln = La, Nd, Sm, Gd, and Dy, Sens. Actuators B 2003, 94, 132–139CrossRefGoogle Scholar
  41. 41.
    Niu, X.; Du, W.; Du, W., Preparation, characterization and gas-sensing properties of rare earth mixed oxides, Sens. Actuators B, 2004, 99, 399–404CrossRefGoogle Scholar
  42. 42.
    Martinelli, G.; Carotta, M. C.; Ferroni, M.; Sadaoka, Y.; Traversa, E., Screen-printed perovskite-type thick films as gas sensors for environmental monitoring, Sens. Actuators B 1999, 55, 99–110CrossRefGoogle Scholar
  43. 43.
    Frantzen, A.; Sanders, D.; Jockel, J.; Scheidtmann, J.; Frenzer, G.; Maier, W. F.; Brinz, Th.; Simon, U., High-throughput method for the impedance spectroscopic characterization of resistive gas sensors, Angew. Chem., 116, 770–773; Angew. Chem. Int. Ed. 2004, 43, 752–754Google Scholar
  44. 44.
    Macdonald, J. R. Impedance Spectroscopy, Wiley, New York, 1987 Google Scholar
  45. 45.
    Orazem, M. E.; Shukla, P.; Membrino, M. A., Extension of the measurement model approach for deconvolution of the underlying distributions for impedance measurements, Electrochimica Acta 2002, 47, 2027–2034CrossRefGoogle Scholar
  46. 46.
    Janssens, T. V.; Carlsson, A.; Puig-Molina, A.; Clausen, B. S., Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts, J. Catal. 2006, 240(2), 108–113CrossRefGoogle Scholar
  47. 47.
    Haruta, M., Size-and support-dependency on the catalysis of gold, Catal. Today 1997, 36, 153–166CrossRefGoogle Scholar
  48. 48.
    Solsona, B. E.; Edwards, J. K.; Landon, P.; Carley, A. F.; Herzing, C., Direct synthesis of hydrogen peroxide from H2 and O2 using Al2O3 supported Au-Pd catalysts, Chem. Mater. 2006, 18(11), 2689–2695CrossRefGoogle Scholar
  49. 49.
    Korotcenkov, G., Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches, Sens. Actuators B 2005, 107, 209–232CrossRefGoogle Scholar
  50. 50.
    Filippini, D.; Fraigi, L.; Aragón, R.; Weimar, U., Thick film Au-gate field-effect devices sensitive to NO2, Sens. Actuators. B 2002, 81(2–3), 296–300CrossRefGoogle Scholar
  51. 51.
    Sun, H.-T.; Cantalini, C.; Faccio, M.; Pelino, M., NO2 gas sensitivity of sol—gel-derived α-Fe2O3 thin films, Thin Solid Films 1995, 269, 97–101CrossRefGoogle Scholar
  52. 52.
    Arakawa, T.; Kurachi, H.; Shiokawa, J., Physicochemical properties of rare earth perovskite oxides used as gas sensor material, J. Mater. Sci. 1985, 20, 1207–1210CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Inorganic ChemistryRWTH Aachen UniversityAachenGermany

Personalised recommendations