Advertisement

Impedometric Screening of Gas-Sensitive Inorganic Materials

  • Maike Siemons
  • Ulrich Simon
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

This chapter presents a setup for high throughput impedance spectroscopy (HT-IS) on gas sensing materials at different temperatures and in various gas atmospheres. Time consuming steps could be parallelized by using multielectrode substrate plates for 64 samples. Screening results for a surface doped CoTiO3/La and LnFeO3 sample plates are shown to illustrate the relevance of HT-IS in the search for new gas sensing materials.

Keywords

Constant Phase Element Sample Plate Multielectrode Array Measuring Head Impedance Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported by BMBF under contract No.03 C 0305 A. M. S. gratefully acknowledges generous support by the Studienstiftung des Deutschen Volkes.

References

  1. 1.
    Yamazoe, N., Towards innovations of gas sensor technology, Sens. Actuators B: Chem. 2005, 108(1–2), 2–14Google Scholar
  2. 2.
    Schüth, F., Hochdurchsatzuntersuchungen. In: Chemische Technik: Prozesse und Produkte, Winnacker/Küchler, Band 2: Neue Technologien, Dittmeyer, R.; Keim, W.; Kreysa, G.; Oberholz, A., (Eds.) Wiley-VCH, Weinheim 2004 Google Scholar
  3. 3.
    Maier, W. F., Kombinatorische Chemie-Herausforderung und Chance für die Entwicklung neuer Katalysatoren und Materialien, Angew. Chem. 1999, 111(9), 1295–1296CrossRefGoogle Scholar
  4. 4.
    Franke, M. E.; Koplin, T. J.; Simon, U., Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2006, 2(1), 36–50CrossRefGoogle Scholar
  5. 5.
    Amis, E. J.; Xiang, X.-D.; Zhao, J.-C., Combinatorial Materials Science: What’s New Since Edison? MRS Bull. 2002, 4, 295–297Google Scholar
  6. 6.
    Amis, E. J., Combinatorial materials science: Reaching beyond discovery, Nat. Mater. 2004, 3, 83–84CrossRefGoogle Scholar
  7. 7.
    Xiang, X.-D.; Sun, X.; Briceño, G.; Lou, Y.; Wang, K. A.; Chang, H.; Wallace-Freedman, W. G.; Chen, S.-W.; Schultz, P. G., A combinatorial approach to material discovery, Science 1995, 268, 1738–1740CrossRefGoogle Scholar
  8. 8.
    Xiang, X.-D.; Schultz, P. G., The combinatorial synthesis and evaluation of functional materials, Physica C 1997, 282–287, 428–430CrossRefGoogle Scholar
  9. 9.
    Reichenbach, H. M.; McGinn, P. J., Combinatorial synthesis of oxide powders, J. Mater. Res. 2001, 16(4), 967–974CrossRefGoogle Scholar
  10. 10.
    Moates, F. C.; Somani, M.; Annamalai, J.; Richardson, J. T.; Luss, D.; Wilson, R. C., Infrared Thermographic screening of combinatorial libraries of heterogenous catalysts, Ind. Eng. And Chem. Res. 1996, 35, 4801–4803CrossRefGoogle Scholar
  11. 11.
    Jandeleit, B.; Schaefer, D. J.; Powers, T. S.; Turner, T. W.; Weinberg, W. H., Combinatorial materials science and catalysis, Angew. Chem. 111, 2648–2689; Angew. Chem. Int. Ed. 1999, 38, 2494–2532Google Scholar
  12. 12.
    High-Throughput Screening in Chemical Catalysis, Hagemeyer, A.; Stasser, P.; Volpe, Jr. A. F. (Eds.) Wiley-VCH, Weinheim, 2004 Google Scholar
  13. 13.
    Danielson, E.; Devenney, M.; Giaquinta, D. M.; Golden, J. H.; Haushalter, R. C.; McFarland, E. W.; Poojary, D. M.; Reaves, C. M.; Weinberg, W. H.; Wu, X. D., A rare-earth phosophor containing one-dimensional chains identified through combinatorial methods, Science 1998, 279, 837–839CrossRefGoogle Scholar
  14. 14.
    Briceño, G.; Chang, H.; Sun, X.; Schultz, P. G.; Xiang, X.-D., A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis, Science 1995, 270, 273–275CrossRefGoogle Scholar
  15. 15.
    Baeck, S. H.; Jaramillo, T. F.; Brändli, C.; McFarland, E. W., Combinatorial electrochemical synthesis and characterization of tungsten-based mixed-metal oxides, J. Comb. Chem. 2002, 4, 563–568CrossRefGoogle Scholar
  16. 16.
    Van Dover, R. B.; Schneemeyer, R. F.; Fleming, R. M., Discovery of a useful thin-film dielectric using a composition-spread approach, Nature 1998, 392, 162CrossRefGoogle Scholar
  17. 17.
    Chang, H.; Gao, C.; Takeuchi, L.; Yoo, Y.; Wang, J.; Schultz, P. G.; Xiang, D.; Sharma, P. R.; Downes, M.; Venkatesan, T., Combinatorial synthesis and high throughput evaluation of ferroelectric/ dielectric thin-film libraries for microwave applications, Appl. Phys. Lett. 1998, 72, 2185–2187CrossRefGoogle Scholar
  18. 18.
    Aronova, M. A.; Chang, K. S.; Takeuchi, I.; Jabs, H.; Westerheim, D.; Gonzalez-Martin, A.; Kim, J.; Lewis, B., Combinatorial libraries of semiconductor gas sensors as inorganic electronic noses, Appl. Phys. Lett. 2003, 83(6), 1255–1257CrossRefGoogle Scholar
  19. 19.
    Sekan, S., Combinatorial heterogeneous catalysis — a new path in an old field, Angew. Chem. Int. Ed. 2001, 40(2), 312–329CrossRefGoogle Scholar
  20. 20.
    Yoo, Y. K.; Xiang, X.-D., Combinatorial material preparation, J. Phys.: Condens. Matter 2002, 14, R49–R78CrossRefGoogle Scholar
  21. 21.
    Brinz, T., Maier, W. F.; Wolfbeis, O.; Simon, U., Gassensoren durch High-Throuput-Methoden, Nachrichten aus der Chemie 2004, 52, 247–251CrossRefGoogle Scholar
  22. 22.
    Simon, U.; Sanders, D.; Jockel, J.; Heppel, C.; Brinz, T., Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials, J. Comb. Chem. 2002, 4, 511–515CrossRefGoogle Scholar
  23. 23.
    Scheibe, C.; Obermeier, E.; Maunz, W.; Plog, C., Development of a high-temperature basic device for chemical sensors based on an IDC with on-chip heating, Sens. Acturators B 1995, 25, 584–587CrossRefGoogle Scholar
  24. 24.
    Sanders, D., Entwicklung von Gassensoren auf Indiumoxid-Basis mittels Hochdurchsatz-Impedanzspektroskopie, PhD thesis, RWTH Aachen, 2004 Google Scholar
  25. 25.
    Simon, U.; Sanders, D.; Jockel, J.; Brinz, T., Setup for high-throughput impedance screening of gas-sensing materials, J. Comb. Chem. 2005, 7(5), 682–687CrossRefGoogle Scholar
  26. 26.
    Frantzen, A.; Sanders, D.; Scheidtmann, J.; Simon, U.; Maier, W. F., A flexible database for combinatorial and high-throughput materials science, QSAR Comb. Sci. 2005, 24, 22–28CrossRefGoogle Scholar
  27. 27.
    Sanders, D.; Siemons, M.; Koplin, T.; Simon, U., Development of a high-throughput impedance spectroscopy screening system (HT-IS) for characterization of novel nanoscaled gas sensing materials, Mater. Res. Soc. Symp. Proc. 2005, 876E, R6.1.1–R6.1.6Google Scholar
  28. 28.
    Koplin, T. J.; Siemons, M.; Océn-Valéntin, C.; Sanders, D.; Simon, U., Workflow for high-throughput screening of gas sensing materials, Sensors 2006, 6, 298–307CrossRefGoogle Scholar
  29. 29.
    Siemons, M.; Simon, U., Preparation and gas sensing properties of nanocrystalline La-doped CoTiO3, Sens. Actuators B 2007, 120(1), 110–118CrossRefGoogle Scholar
  30. 30.
    Siemons, M.; Leifert, A.; Simon, U., Preparation and gas sensing characteristics of nanoparticulate p-type semiconducting LnFeO3 and LnCrO3 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), Adv. Funct. Mater. 2007, 17(13), 2189–2197CrossRefGoogle Scholar
  31. 31.
    Feldmann, C., Polyol-mediated synthesis of nanoscale functional materials, Adv. Funct. Mater. 2003, 13(2), 101–107CrossRefGoogle Scholar
  32. 32.
    Feldmann, C., Darstellung und Charakterisierung der nanoskaligen Vb-Metalloxide M2O5 (M = V, Nb, Ta), Z. Anorg. Allg. Chem. 2004, 630, 2473–2477CrossRefGoogle Scholar
  33. 33.
    Fiévet, F., Polyol Process in T. Sugimoto, Fine Particles: Synthesis, Characterization, and Mechanisms of Growth, Marcel Dekker, NY, pp. 460–496, 2000 Google Scholar
  34. 34.
    Poul, L.; Jouini, N.; Fievet, F., Layerd Hydoxide Metal Acetates (Metal = Zinc, Cobalt and Nickel): Elaboration via hydrolysis in polyol medium and comparative study, Chem. Mater. 2000, 12, 3123–3132CrossRefGoogle Scholar
  35. 35.
    Siemons, M.; Weirich, Th.; Mayer, J.; Simon, U., Preparation of nanosized perovskite-type oxides via polyol method, Z. Anorg. Allg. Chem. 2004, 630, 2083–2089CrossRefGoogle Scholar
  36. 36.
    Chu, X.; Liu, X.; Wang, G.; Meng, G., Peparation and gas sensing properties of nano-CoTiO3, Mat. Res. Bull. 1999, 34(10/11), 1789–1795CrossRefGoogle Scholar
  37. 37.
    Peña, M. A.; Fierro, J. L. G., Chemical structures and performance of perovskite oxides, Chem. Rev. 2001, 101, 1981–2017CrossRefGoogle Scholar
  38. 38.
    Yokokawa, H.; Sakai, N.; Horita, T., Yamaji, K., Recent developments in solid oxide fuel cell materials, Fuel Cells 2001, 1(2), 117–131CrossRefGoogle Scholar
  39. 39.
    Keller, N.; Mistrik, J.; Visnovsky, S.; Schmool, D. S.; Dumont, Y.; Renaudin, P.; Guyot, M.; Krishnan, R., Magneto-optical Faraday and Kerr effect of orthoferrite thin films at high temperatures, Eur. Phys. J. B 2001, 21(1), 67–73CrossRefGoogle Scholar
  40. 40.
    Aono, H.; Traversa, E.; Sakamoto, M.; Sadaoka, Y., Crystallographic characterization and NO2 gas sensing property of LnFeO3 prepared by thermal decomposition of Ln-Fe hexacyanocomplexes, Ln[Fe(CN)6n H2O, Ln = La, Nd, Sm, Gd, and Dy, Sens. Actuators B 2003, 94, 132–139CrossRefGoogle Scholar
  41. 41.
    Niu, X.; Du, W.; Du, W., Preparation, characterization and gas-sensing properties of rare earth mixed oxides, Sens. Actuators B, 2004, 99, 399–404CrossRefGoogle Scholar
  42. 42.
    Martinelli, G.; Carotta, M. C.; Ferroni, M.; Sadaoka, Y.; Traversa, E., Screen-printed perovskite-type thick films as gas sensors for environmental monitoring, Sens. Actuators B 1999, 55, 99–110CrossRefGoogle Scholar
  43. 43.
    Frantzen, A.; Sanders, D.; Jockel, J.; Scheidtmann, J.; Frenzer, G.; Maier, W. F.; Brinz, Th.; Simon, U., High-throughput method for the impedance spectroscopic characterization of resistive gas sensors, Angew. Chem., 116, 770–773; Angew. Chem. Int. Ed. 2004, 43, 752–754Google Scholar
  44. 44.
    Macdonald, J. R. Impedance Spectroscopy, Wiley, New York, 1987 Google Scholar
  45. 45.
    Orazem, M. E.; Shukla, P.; Membrino, M. A., Extension of the measurement model approach for deconvolution of the underlying distributions for impedance measurements, Electrochimica Acta 2002, 47, 2027–2034CrossRefGoogle Scholar
  46. 46.
    Janssens, T. V.; Carlsson, A.; Puig-Molina, A.; Clausen, B. S., Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts, J. Catal. 2006, 240(2), 108–113CrossRefGoogle Scholar
  47. 47.
    Haruta, M., Size-and support-dependency on the catalysis of gold, Catal. Today 1997, 36, 153–166CrossRefGoogle Scholar
  48. 48.
    Solsona, B. E.; Edwards, J. K.; Landon, P.; Carley, A. F.; Herzing, C., Direct synthesis of hydrogen peroxide from H2 and O2 using Al2O3 supported Au-Pd catalysts, Chem. Mater. 2006, 18(11), 2689–2695CrossRefGoogle Scholar
  49. 49.
    Korotcenkov, G., Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches, Sens. Actuators B 2005, 107, 209–232CrossRefGoogle Scholar
  50. 50.
    Filippini, D.; Fraigi, L.; Aragón, R.; Weimar, U., Thick film Au-gate field-effect devices sensitive to NO2, Sens. Actuators. B 2002, 81(2–3), 296–300CrossRefGoogle Scholar
  51. 51.
    Sun, H.-T.; Cantalini, C.; Faccio, M.; Pelino, M., NO2 gas sensitivity of sol—gel-derived α-Fe2O3 thin films, Thin Solid Films 1995, 269, 97–101CrossRefGoogle Scholar
  52. 52.
    Arakawa, T.; Kurachi, H.; Shiokawa, J., Physicochemical properties of rare earth perovskite oxides used as gas sensor material, J. Mater. Sci. 1985, 20, 1207–1210CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Inorganic ChemistryRWTH Aachen UniversityAachenGermany

Personalised recommendations