A Modular Strategy for Development of RNA-Based Fluorescent Sensors

  • Masatora Fukuda
  • Tetsuya Hasegawa
  • Hironori Hayashi
  • Takashi Morii
Part of the Integrated Analytical Systems book series (ANASYS)


Fluorescent biosensors that directly transduce binding events of small molecules into optical signals are valuable tools in the areas of therapeutics and diagnostics. However, construction of fluorescent biosensors from macromolecular receptors with desired characteristics, such as detection wavelengths and concentration ranges for ligand detection, is not a straightforward task. A ribonucleopeptide (RNP) receptor was easy to convert to a fluorescent RNP sensor without chemically modifying the nucleotide in the ligand-binding RNA. The strategy of converting the ligand-binding RNP receptor to a fluorescent RNP sensor was applied to generate fluorescent ligandbinding RNP libraries by utilizing a pool of RNA subunits obtained from the in vitro selection of ATP-binding RNPs and various fluorophore-modified peptide subunits. Simple screening of the fluorescent RNP library based on the fluorescence emission intensity changes in the absence and presence of the ligand afforded a wide variety of fluorescent RNP sensors with emission wavelengths ranged from 390 to 670 nm. Screening of the fluorescence emission intensity changes in the presence of increasing concentrations of ligand provided RNP sensors responding at wide concentration ranges of ligand. The combinatorial strategy using the modular RNP receptor enables tailoring of a fluorescent sensor for a specific ligand without knowledge of detailed structural information for the macromolecular receptor.


Biogenic Amine Fluorescent Sensor Pleckstrin Homology Domain Fluorescent Biosensor Peptide Subunit 


  1. 1.
    Zhang, J.; Campbell, R. E.; Ting, A. Y.; Tsien, R. Y., Creating new fluorescent probes for cell biology, Nat. Rev. Mol. Cell Biol. 2002, 3, 906–918CrossRefGoogle Scholar
  2. 2.
    Weiss, S., Fluorescence spectroscopy of single biomolecules, Science 1999, 283, 1676–1683CrossRefGoogle Scholar
  3. 3.
    Pollack, S. J.; Nakayama, G. R.; Schultz, P. G., Introduction of nucleophiles and spectroscopic probes into antibody combining sites, Science 1988, 242, 1038–1040CrossRefGoogle Scholar
  4. 4.
    Renard, M.; Belkadi, L.; Hugo, N.; England, P.; Altschuh, D.; Bedouelle, H. J., Knowledge-based design of reagentless fluorescent biosensors from recombinant antibodies, J. Mol. Biol. 2002, 318, 429–442CrossRefGoogle Scholar
  5. 5.
    Gilardi, G.; Zhou, L. Q.; Hibbert, L.; Cass, A. E., Engineering the maltose binding protein for reagentless fluorescence sensing, Anal. Chem. 1994, 66, 3840–3847CrossRefGoogle Scholar
  6. 6.
    de Lorimier, R. M.; Smith, J. J.; Dwyer, M. A.; Looger, L. L.; Sali, K. M.; Paavola, C. D.; Rizk, S. S.; Sadigov, S.; Conrad, D. W.; Loew, L.; Hellinga, H. W., Construction of a fluorescent biosensor family, Protein Sci. 2002, 11, 2655–2675CrossRefGoogle Scholar
  7. 7.
    Marvin, J. S.; Corcoran, E. E.; Hattangadi, N. A.; Zhang, J. V.; Gere, S. A.; Hellinga, H. W., The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors, Proc. Natl. Acad. Sci. USA 1997, 94, 4366–4371CrossRefGoogle Scholar
  8. 8.
    Hamachi, I.; Nagase, T.; Shinkai, S., A general semisynthetic method for fluorescent saccharide-biosensors based on a lectin, J. Am. Chem. Soc. 2000, 122, 12065–12066CrossRefGoogle Scholar
  9. 9.
    Benson, D. E.; Conrad, D. W.; de Lorimier, R. M.; Trammell, S. A.; Hellinga, H. W., Design of bioelectronic interfaces by exploiting hinge-bending motions in proteins, Science 2001, 293, 1641–1644CrossRefGoogle Scholar
  10. 10.
    Morii, T.; Sugimoto, K.; Makino, K.; Otsuka, M.; Imoto, K.; Mori, Y., A new fluorescent biosensor for inositol trisphosphate, J. Am. Chem. Soc. 2002, 124, 1138–1139CrossRefGoogle Scholar
  11. 11.
    Jayasena, S. D., Aptamers: An emerging class of molecules that rival antibodies in diagnostics, Clin. Chem. 1999, 45, 1628–1650Google Scholar
  12. 12.
    Llano-Sotelo, B.; Chow, C. S., RNA-aminoglycoside antibiotic interactions: fluorescence detection of binding and conformational change, Bioorg. Med. Chem. Lett. 1999, 9, 213–216CrossRefGoogle Scholar
  13. 13.
    Jhaveri, S.; Rajendran, M.; Ellington, A. D., In vitro selection of signaling aptamers, Nat. Biotechnol. 2000, 18, 1293–1297CrossRefGoogle Scholar
  14. 14.
    Stojanovic, M. N.; de Prada, P.; Landry, D. W., Fluorescent sensors based on aptamer self-assembly, J. Am. Chem. Soc. 2000, 122, 11547–11548CrossRefGoogle Scholar
  15. 15.
    Jhaveri, S. D.; Kirby, R.; Conrad, R.; Maglott, E. J.; Bowser, M.; Kennedy, R. T.; Glick, G.; Ellington, A. D., Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity, J. Am. Chem. Soc. 2000, 122, 2469–2473CrossRefGoogle Scholar
  16. 16.
    Stojanovic, M. N.; de Prada, P.; Landry, D. W., Aptamer-based folding fluorescent sensor for cocaine, J. Am. Chem. Soc. 2001, 123, 4928–4931CrossRefGoogle Scholar
  17. 17.
    Fang, X. Cao, Z. Beck, T.; Tan, W., Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy, Anal. Chem. 2001, 73, 5752–5257CrossRefGoogle Scholar
  18. 18.
    Stojanovic, M. N.; Landry, D. W., Aptamer-based colorimetric probe for cocaine, J. Am. Chem. Soc. 2002, 124, 9678–9679CrossRefGoogle Scholar
  19. 19.
    Nutiu, R., Li, Y., Structure-switching signaling aptamers, J. Am. Chem. Soc. 2003, 125, 4771–4778CrossRefGoogle Scholar
  20. 20.
    Stojanovic, M. N.; Green, E. G.; Semova, S.; Nikic, D. B.; Landry, D. W., Cross-reactive arrays based on three-way junctions, J. Am. Chem. Soc. 2003, 125, 6085–6089CrossRefGoogle Scholar
  21. 21.
    Stojanovic, M. N.; Kolpashchikov, D. M., Modular aptameric sensors, J. Am. Chem. Soc. 2004, 126, 9266–9270CrossRefGoogle Scholar
  22. 22.
    Yamana, K.; Ohtani, Y.; Nakano, H.; Saito, I., Bis-pyrene labeled DNA APTAMER as an intelligent fluorescent biosensor, Bioorg. Med. Chem. Lett. 2003, 13, 3429–3431CrossRefGoogle Scholar
  23. 23.
    Ho, H. A.; Leclerc, M., Optical sensors based on hybrid aptamer/conjugated polymer complexes, J. Am. Chem. Soc. 2004, 126, 1384–1387CrossRefGoogle Scholar
  24. 24.
    Kirby, R.; Cho, E. J.; Gehrke, B.; Bayer, T.; Park, Y. S.; Neikirk, D. P.; McDevitt, J. T.; Ellington, A. D., Aptamer-based sensor arrays for the detection and quantitation of proteins, Anal. Chem. 2004, 76, 4066–4075CrossRefGoogle Scholar
  25. 25.
    Savran, C. A.; Knudsen, S. M.; Ellington, A. D.; Manalis, S. R., Micromechanical detection of proteins using aptamer-based receptor molecules, Anal. Chem. 2004, 76, 3194–3198CrossRefGoogle Scholar
  26. 26.
    Jiang, Y.; Fang, X.; Bai, C., Signaling aptamer/protein binding by a molecular light switch complex, Anal. Chem. 2004, 76, 5230–5235CrossRefGoogle Scholar
  27. 27.
    Nutiu, R.; Li, Y., In vitro selection of structure-switching signaling aptamers, Angew. Chem. Int. Ed. 2005, 44, 1061–1065CrossRefGoogle Scholar
  28. 28.
    Merino, E. J.; Weeks, K. M., Facile conversion of aptamers into sensors using a 2′-ribose-linked fluorophore, J. Am. Chem. Soc. 2005, 127, 12766–12767CrossRefGoogle Scholar
  29. 29.
    Mayer, B. J.; Ren, R.; Clark, K. L.; Baltimore, D., A putative modular domain present in diverse signaling proteins, Cell 1993, 73, 629–630CrossRefGoogle Scholar
  30. 30.
    Haslam, R. J.; Koide, H. B.; Hemmings, B. A., Pleckstrin domain homology, Nature 1993, 363, 309–310CrossRefGoogle Scholar
  31. 31.
    Lemmon, M. A.; Ferguson, K. M.; O’Brien, R.; Sigler, P. B.; Schlessinger, J., Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain, Proc. Natl Acad. Sci. USA 1995, 92, 10472–10476CrossRefGoogle Scholar
  32. 32.
    Hyvonen, M.; Macias, M. J.; Nilges, M.; Oschkinat, H.; Saraste, M.; Wilmanns, M., Structure of the binding site for inositol phosphates in a PH domain, EMBO J. 1995, 14, 4676–4685Google Scholar
  33. 33.
    Ferguson, K. M.; Lemmon, M. A.; Schlessinger, J. Sigler, P. B., Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain, Cell 1995, 83, 1037–1046CrossRefGoogle Scholar
  34. 34.
    Ellington, A. D.; Szostak, J. W., In vitro selection of RNA molecules that bind specific ligands, Nature 1990, 346, 818–822CrossRefGoogle Scholar
  35. 35.
    Wilson, D. S.; Szostak, J. W., In vitro selection of functional nucleic acids, Annu. Rev. Biochem. 1999, 68, 611–647CrossRefGoogle Scholar
  36. 36.
    Lin, C. H.; Patel, D. J., Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP, Chem. Biol. 1997, 4, 817–832CrossRefGoogle Scholar
  37. 37.
    Jiang, F.; Kumar, R. A.; Jones, R. A.; Patel, D. J., Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex, Nature 1996, 382, 183–186CrossRefGoogle Scholar
  38. 38.
    Dieckmann, T.; Suzuki, E.; Nakamura, G. K.; Feigon, J., Solution structure of an ATP-binding RNA aptamer reveals a novel fold, RNA 1996, 2, 628–648Google Scholar
  39. 39.
    Hagihara, M.; Fukuda, M.; Hasegawa, T.; Morii, M., A modular strategy for fluoresent biosensors from ribonucleopeptide complexes, J. Am. Chem. Soc. 2006, 128, 12932–12940CrossRefGoogle Scholar
  40. 40.
    Morii, T.; Hagihara, M.; Sato, S.; Makino, K., In vitro selection of ATP-binding receptors using a ribonucleopeptide complex, J. Am. Chem. Soc. 2002, 124, 4617–4622CrossRefGoogle Scholar
  41. 41.
    Sato, S.; Fukuda, M.; Hagihara, M.; Tanabe; Y., Ohkubo, K.; Morii, T., Stepwise molding of a highly selective ribonucleopeptide receptor, J. Am. Chem. Soc. 2005, 127, 30–31CrossRefGoogle Scholar
  42. 42.
    Battiste, J. L.; Mao, H.; Rao, N. S.; Tan, R.; Muhandiram, D. R.; Kay, L. E.; Frankel, A. D.; Williamson, J. R., Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex, Science 1996, 273, 1547–1551CrossRefGoogle Scholar
  43. 43.
    Johnson, L. N.; Lewis, R. J., Structural basis for control by phosphorylation, Chem. Rev. 2001, 101, 2209–2242CrossRefGoogle Scholar
  44. 44.
    Chen, Z.; Gibson, T. B.; Robinson, F.; Silvestro, L.; Pearson, G.; Xu, B.; Wright, A.; Vanderbilt, C.; Cobb, M. H., MAP kinases, Chem. Rev. 2001, 101, 2449–2476CrossRefGoogle Scholar
  45. 45.
    Hunter, T., Protein modification: phosphorylation on tyrosine residues, Curr. Opin. Cell Biol. 1989, 1, 1168–1181CrossRefGoogle Scholar
  46. 46.
    Hunter, T., Signaling-2000 and beyond, Cell 2000, 100, 113–127CrossRefGoogle Scholar
  47. 47.
    Yan, J. X.; Packer, N. H.; Gooley, A. A.; Williams, K. L., Protein phosphorylation: technologies for the identification of phosphoamino acids, J. Chromatogr. A 1998, 808, 23–41CrossRefGoogle Scholar
  48. 48.
    Pestka, S.; Lin, L.; Wu, W.; Izotova, L., Introduction of protein kinase recognition sites into proteins: a review of their preparation, advantages, and applications, Protein Expr. Purif. 1999, 17, 203–214CrossRefGoogle Scholar
  49. 49.
    Machida, K.; Mayer, B. J.; Nollau, P., Profiling the global tyrosine phosphorylation state, Mol. Cell Proteomics 2003, 2, 215–233Google Scholar
  50. 50.
    Mandell, J. W., Phosphorylation state-specific antibodies: applications in investigative and diagnostic pathology, Am. J. Pathol. 2003, 163, 1687–1698Google Scholar
  51. 51.
    Rush, J.; Moritz, A.; Lee, K. A.; Guo, A.; Goss, V. L.; Spek, E. J.; Zhang, H.; Zha, X. M.; Polakiewicz, R. D.; Comb, M. J., Immunoaffinity profiling of tyrosine phosphorylation in cancer cells, Nat. Biotech. 2005, 23, 94–101CrossRefGoogle Scholar
  52. 52.
    Salomon, A. R.; Ficarro, S. B.; Brill, L. M.; Brinker, A.; Phung, Q. T.; Ericson, C.; Sauer, K.; Brock, A.; Horn, D. M.; Schultz, P. G.; Peters, E. C., Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry, Proc. Natl. Acad. Sci. USA 2003, 100, 443–448CrossRefGoogle Scholar
  53. 53.
    Blagoev, B.; Ong, S. E.; Kratchmarova, I.; Mann, M., Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics, Nat. Biotechnol. 2004, 22, 1139–1145CrossRefGoogle Scholar
  54. 54.
    Cotner, E. S.; Smith, P. J., Phosphotyrosine binding by ammonium- and guanidinium-modified cyclodextrins, J. Org. Chem. 1998, 63, 1737–1739CrossRefGoogle Scholar
  55. 55.
    Ojida, A.; Mito-oka, Y.; Inoue, M. A.; Hamachi, I., First artificial receptors and chemosensors toward phosphorylated peptide in aqueous solution, J. Am. Chem. Soc. 2002, 124, 6256–6258CrossRefGoogle Scholar
  56. 56.
    Ojida, A.; Mito-oka, Y.; Sada, K.; Hamachi, I., Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors, J. Am. Chem. Soc. 2004, 126, 2454–2463CrossRefGoogle Scholar
  57. 57.
    Hasegawa, T.; Ohkubo, K.; Yoshikawa, S.; Morii, T., A ribonucleopeptide receptor targets phosphotyrosine, e-J. Surf. Sci. Nanotech. 2005, 3, 33–37CrossRefGoogle Scholar
  58. 58.
    Hoffman, B. J.; Hansson, S.R.; Mezey, E.; Palkovits, M., Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system, Front. Neuroendocrinol. 1998, 19, 187–231CrossRefGoogle Scholar
  59. 59.
    Bloom, F. E.; Giarman, N. J., Physiologic and pharmacologic considerations of biogenic amines in the nervous system, Annu. Rev. Pharmacol. 1968, 8, 229–258CrossRefGoogle Scholar
  60. 60.
    Houghton, P. J.; Howes, M. J., Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease, Neurosignals. 2005, 14, 6–22CrossRefGoogle Scholar
  61. 61.
    Davis, B. A., Biogenic amines and their metabolites in body fluids of normal, psychiatric and neurological subjects, J. Chromatogr. 1989, 466, 89–218CrossRefGoogle Scholar
  62. 62.
    Fotopoulou, M. A.; Ioannou, P. C., Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography, Anal. Chim. Acta 2002, 462, 179–185CrossRefGoogle Scholar
  63. 63.
    Chan, E. C.; Wee, P. Y.; Ho, P. Y.; Ho, P. C., High-performance liquid chromatographic assay for catecholamines and metanephrines using fluorimetric detection with pre-column 9-fluore-nylmethyloxycarbonyl chloride derivatization, J. Chromatogr B Biomed. Sci. Appl. 2000, 749, 179–189CrossRefGoogle Scholar
  64. 64.
    Panholzer, T. J.; Beyer, J.; Lichtwald, K., Coupled-column liquid chromatographic analysis of catecholamines, serotonin, and metabolites in human urine, Clin. Chem. 1999, 45, 262–268Google Scholar
  65. 65.
    McKenzie, J. A.; Watson, C. J.; Rostand, R. D.; German, I.; Witowski, S. R.; Kennedy, R. T., Automated capillary liquid chromatography for simultaneous determination of neuroactive amines and amino acids, J. Chromatogr. A. 2002, 962, 105–115CrossRefGoogle Scholar
  66. 66.
    Raggi, M. A.; Sabbioni, C.; Casamenti, G.; Gerra, G.; Calonghi, N.; Masotti, L., Determination of catecholamines in human plasma by high-performance liquid chromatography with electrochemical detection, J. Chromatogr B Biomed. Sci. Appl. 1999, 730, 201–211CrossRefGoogle Scholar
  67. 67.
    Xu, F.; Gao, M.; Shi, G.; Wang, L.; Zhang, W.; Xue, J.; Jin, L.; Jin, J., Simultaneous detection of monoamines in rat striatal microdialysate at poly(para-aminobenzoic acid) modified electrode by high-performance liquid chromatography, Anal. Chim. Acta. 2001, 439, 239–246CrossRefGoogle Scholar
  68. 68.
    Slingerland, R. J.; van Kuilenburg, A. B.; Bodlaender, J. M.; Overmars, H.; Voûte, P. A.; van Gennip, A. H., High-performance liquid chromatographic analysis of biogenic amines in cells and in culture media using on-line dialysis and trace enrichment, J. Chromatogr B Biomed. Sci. Appl. 1998, 716, 65–75CrossRefGoogle Scholar
  69. 69.
    Grossi, G.; Bargossi, A.; Sprovieri, G.; Bernagozzi, V.; Pasquali, R., Full automation of serotonin determination by column-switching and HPLC, Chromatographia 1990, 30, 61–68CrossRefGoogle Scholar
  70. 70.
    Raymo, F. M.; Cejas, M. A., Supramolecular association of dopamine with immobilized fluorescent probes, Org. Lett. 2002, 4, 3183–3185CrossRefGoogle Scholar
  71. 71.
    Kim, J.; Raman, B.; Ahn, K. H., Artificial receptors that provides a preorganized hydrophobic environment: a biomimetic approach to dopamine recognition in water, J. Org. Chem. 2006, 71, 38–45CrossRefGoogle Scholar
  72. 72.
    Secor, K. E.; Glass, T. E., Selective amine recognition: development of a chemosensor for dopamine and norepinephrine, Org. Lett. 2004, 6, 3727–3730CrossRefGoogle Scholar
  73. 73.
    Tuerk, C.; Gold, L., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science 1990, 249, 505–510CrossRefGoogle Scholar
  74. 74.
    Mannironi, C.; Di Nardo, A.; Fruscoloni, P.; Tocchini-Valentini, G. P., In vitro selection of dopamine RNA ligands, Biochemistry 1997, 36, 9726–9734CrossRefGoogle Scholar
  75. 75.
    Majerfeld, I.; Puthenvedu, D.; Yarus, M., RNA affinity for molecular L-histidine; genetic code origins, J. Mol. Evol. 2005, 61, 226–235CrossRefGoogle Scholar
  76. 76.
    Famulok, M.; Szostak, J. W., Stereospecific recognition of tryptophan agarose by in vitro selected RNA, J. Am. Chem. Soc. 1992, 114, 3990–3991CrossRefGoogle Scholar
  77. 77.
    Weng, S.; Gu, K.; Hammond, P. W.; Lohse, P.; Rise, C.; Wagner, R. W.; Wright, M. C.; Kuimelis, R. G., Generating addressable protein microarrays with PROfusion covalent mRNA-protein fusion technology, Proteomics 2002, 2, 48–57CrossRefGoogle Scholar
  78. 78.
    Collett, J. R.; Cho, E. J.; Ellington, A. D., Production and processing of aptamer microarrays, Methods. 2005, 37, 4–15CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Masatora Fukuda
    • 1
  • Tetsuya Hasegawa
    • 1
  • Hironori Hayashi
    • 1
  • Takashi Morii
    • 1
  1. 1.Institute of Advanced EnergyKyoto University, UjiKyotoJapan

Personalised recommendations