Skip to main content

A Modular Strategy for Development of RNA-Based Fluorescent Sensors

  • Chapter
Combinatorial Methods for Chemical and Biological Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 978 Accesses

Abstract

Fluorescent biosensors that directly transduce binding events of small molecules into optical signals are valuable tools in the areas of therapeutics and diagnostics. However, construction of fluorescent biosensors from macromolecular receptors with desired characteristics, such as detection wavelengths and concentration ranges for ligand detection, is not a straightforward task. A ribonucleopeptide (RNP) receptor was easy to convert to a fluorescent RNP sensor without chemically modifying the nucleotide in the ligand-binding RNA. The strategy of converting the ligand-binding RNP receptor to a fluorescent RNP sensor was applied to generate fluorescent ligandbinding RNP libraries by utilizing a pool of RNA subunits obtained from the in vitro selection of ATP-binding RNPs and various fluorophore-modified peptide subunits. Simple screening of the fluorescent RNP library based on the fluorescence emission intensity changes in the absence and presence of the ligand afforded a wide variety of fluorescent RNP sensors with emission wavelengths ranged from 390 to 670 nm. Screening of the fluorescence emission intensity changes in the presence of increasing concentrations of ligand provided RNP sensors responding at wide concentration ranges of ligand. The combinatorial strategy using the modular RNP receptor enables tailoring of a fluorescent sensor for a specific ligand without knowledge of detailed structural information for the macromolecular receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, J.; Campbell, R. E.; Ting, A. Y.; Tsien, R. Y., Creating new fluorescent probes for cell biology, Nat. Rev. Mol. Cell Biol. 2002, 3, 906–918

    Article  CAS  Google Scholar 

  2. Weiss, S., Fluorescence spectroscopy of single biomolecules, Science 1999, 283, 1676–1683

    Article  CAS  Google Scholar 

  3. Pollack, S. J.; Nakayama, G. R.; Schultz, P. G., Introduction of nucleophiles and spectroscopic probes into antibody combining sites, Science 1988, 242, 1038–1040

    Article  CAS  Google Scholar 

  4. Renard, M.; Belkadi, L.; Hugo, N.; England, P.; Altschuh, D.; Bedouelle, H. J., Knowledge-based design of reagentless fluorescent biosensors from recombinant antibodies, J. Mol. Biol. 2002, 318, 429–442

    Article  CAS  Google Scholar 

  5. Gilardi, G.; Zhou, L. Q.; Hibbert, L.; Cass, A. E., Engineering the maltose binding protein for reagentless fluorescence sensing, Anal. Chem. 1994, 66, 3840–3847

    Article  CAS  Google Scholar 

  6. de Lorimier, R. M.; Smith, J. J.; Dwyer, M. A.; Looger, L. L.; Sali, K. M.; Paavola, C. D.; Rizk, S. S.; Sadigov, S.; Conrad, D. W.; Loew, L.; Hellinga, H. W., Construction of a fluorescent biosensor family, Protein Sci. 2002, 11, 2655–2675

    Article  Google Scholar 

  7. Marvin, J. S.; Corcoran, E. E.; Hattangadi, N. A.; Zhang, J. V.; Gere, S. A.; Hellinga, H. W., The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors, Proc. Natl. Acad. Sci. USA 1997, 94, 4366–4371

    Article  CAS  Google Scholar 

  8. Hamachi, I.; Nagase, T.; Shinkai, S., A general semisynthetic method for fluorescent saccharide-biosensors based on a lectin, J. Am. Chem. Soc. 2000, 122, 12065–12066

    Article  CAS  Google Scholar 

  9. Benson, D. E.; Conrad, D. W.; de Lorimier, R. M.; Trammell, S. A.; Hellinga, H. W., Design of bioelectronic interfaces by exploiting hinge-bending motions in proteins, Science 2001, 293, 1641–1644

    Article  CAS  Google Scholar 

  10. Morii, T.; Sugimoto, K.; Makino, K.; Otsuka, M.; Imoto, K.; Mori, Y., A new fluorescent biosensor for inositol trisphosphate, J. Am. Chem. Soc. 2002, 124, 1138–1139

    Article  CAS  Google Scholar 

  11. Jayasena, S. D., Aptamers: An emerging class of molecules that rival antibodies in diagnostics, Clin. Chem. 1999, 45, 1628–1650

    CAS  Google Scholar 

  12. Llano-Sotelo, B.; Chow, C. S., RNA-aminoglycoside antibiotic interactions: fluorescence detection of binding and conformational change, Bioorg. Med. Chem. Lett. 1999, 9, 213–216

    Article  CAS  Google Scholar 

  13. Jhaveri, S.; Rajendran, M.; Ellington, A. D., In vitro selection of signaling aptamers, Nat. Biotechnol. 2000, 18, 1293–1297

    Article  CAS  Google Scholar 

  14. Stojanovic, M. N.; de Prada, P.; Landry, D. W., Fluorescent sensors based on aptamer self-assembly, J. Am. Chem. Soc. 2000, 122, 11547–11548

    Article  CAS  Google Scholar 

  15. Jhaveri, S. D.; Kirby, R.; Conrad, R.; Maglott, E. J.; Bowser, M.; Kennedy, R. T.; Glick, G.; Ellington, A. D., Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity, J. Am. Chem. Soc. 2000, 122, 2469–2473

    Article  CAS  Google Scholar 

  16. Stojanovic, M. N.; de Prada, P.; Landry, D. W., Aptamer-based folding fluorescent sensor for cocaine, J. Am. Chem. Soc. 2001, 123, 4928–4931

    Article  CAS  Google Scholar 

  17. Fang, X. Cao, Z. Beck, T.; Tan, W., Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy, Anal. Chem. 2001, 73, 5752–5257

    Article  CAS  Google Scholar 

  18. Stojanovic, M. N.; Landry, D. W., Aptamer-based colorimetric probe for cocaine, J. Am. Chem. Soc. 2002, 124, 9678–9679

    Article  CAS  Google Scholar 

  19. Nutiu, R., Li, Y., Structure-switching signaling aptamers, J. Am. Chem. Soc. 2003, 125, 4771–4778

    Article  CAS  Google Scholar 

  20. Stojanovic, M. N.; Green, E. G.; Semova, S.; Nikic, D. B.; Landry, D. W., Cross-reactive arrays based on three-way junctions, J. Am. Chem. Soc. 2003, 125, 6085–6089

    Article  CAS  Google Scholar 

  21. Stojanovic, M. N.; Kolpashchikov, D. M., Modular aptameric sensors, J. Am. Chem. Soc. 2004, 126, 9266–9270

    Article  CAS  Google Scholar 

  22. Yamana, K.; Ohtani, Y.; Nakano, H.; Saito, I., Bis-pyrene labeled DNA APTAMER as an intelligent fluorescent biosensor, Bioorg. Med. Chem. Lett. 2003, 13, 3429–3431

    Article  CAS  Google Scholar 

  23. Ho, H. A.; Leclerc, M., Optical sensors based on hybrid aptamer/conjugated polymer complexes, J. Am. Chem. Soc. 2004, 126, 1384–1387

    Article  CAS  Google Scholar 

  24. Kirby, R.; Cho, E. J.; Gehrke, B.; Bayer, T.; Park, Y. S.; Neikirk, D. P.; McDevitt, J. T.; Ellington, A. D., Aptamer-based sensor arrays for the detection and quantitation of proteins, Anal. Chem. 2004, 76, 4066–4075

    Article  CAS  Google Scholar 

  25. Savran, C. A.; Knudsen, S. M.; Ellington, A. D.; Manalis, S. R., Micromechanical detection of proteins using aptamer-based receptor molecules, Anal. Chem. 2004, 76, 3194–3198

    Article  CAS  Google Scholar 

  26. Jiang, Y.; Fang, X.; Bai, C., Signaling aptamer/protein binding by a molecular light switch complex, Anal. Chem. 2004, 76, 5230–5235

    Article  CAS  Google Scholar 

  27. Nutiu, R.; Li, Y., In vitro selection of structure-switching signaling aptamers, Angew. Chem. Int. Ed. 2005, 44, 1061–1065

    Article  CAS  Google Scholar 

  28. Merino, E. J.; Weeks, K. M., Facile conversion of aptamers into sensors using a 2′-ribose-linked fluorophore, J. Am. Chem. Soc. 2005, 127, 12766–12767

    Article  CAS  Google Scholar 

  29. Mayer, B. J.; Ren, R.; Clark, K. L.; Baltimore, D., A putative modular domain present in diverse signaling proteins, Cell 1993, 73, 629–630

    Article  CAS  Google Scholar 

  30. Haslam, R. J.; Koide, H. B.; Hemmings, B. A., Pleckstrin domain homology, Nature 1993, 363, 309–310

    Article  CAS  Google Scholar 

  31. Lemmon, M. A.; Ferguson, K. M.; O’Brien, R.; Sigler, P. B.; Schlessinger, J., Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain, Proc. Natl Acad. Sci. USA 1995, 92, 10472–10476

    Article  CAS  Google Scholar 

  32. Hyvonen, M.; Macias, M. J.; Nilges, M.; Oschkinat, H.; Saraste, M.; Wilmanns, M., Structure of the binding site for inositol phosphates in a PH domain, EMBO J. 1995, 14, 4676–4685

    CAS  Google Scholar 

  33. Ferguson, K. M.; Lemmon, M. A.; Schlessinger, J. Sigler, P. B., Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain, Cell 1995, 83, 1037–1046

    Article  CAS  Google Scholar 

  34. Ellington, A. D.; Szostak, J. W., In vitro selection of RNA molecules that bind specific ligands, Nature 1990, 346, 818–822

    Article  CAS  Google Scholar 

  35. Wilson, D. S.; Szostak, J. W., In vitro selection of functional nucleic acids, Annu. Rev. Biochem. 1999, 68, 611–647

    Article  CAS  Google Scholar 

  36. Lin, C. H.; Patel, D. J., Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP, Chem. Biol. 1997, 4, 817–832

    Article  CAS  Google Scholar 

  37. Jiang, F.; Kumar, R. A.; Jones, R. A.; Patel, D. J., Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex, Nature 1996, 382, 183–186

    Article  CAS  Google Scholar 

  38. Dieckmann, T.; Suzuki, E.; Nakamura, G. K.; Feigon, J., Solution structure of an ATP-binding RNA aptamer reveals a novel fold, RNA 1996, 2, 628–648

    CAS  Google Scholar 

  39. Hagihara, M.; Fukuda, M.; Hasegawa, T.; Morii, M., A modular strategy for fluoresent biosensors from ribonucleopeptide complexes, J. Am. Chem. Soc. 2006, 128, 12932–12940

    Article  CAS  Google Scholar 

  40. Morii, T.; Hagihara, M.; Sato, S.; Makino, K., In vitro selection of ATP-binding receptors using a ribonucleopeptide complex, J. Am. Chem. Soc. 2002, 124, 4617–4622

    Article  CAS  Google Scholar 

  41. Sato, S.; Fukuda, M.; Hagihara, M.; Tanabe; Y., Ohkubo, K.; Morii, T., Stepwise molding of a highly selective ribonucleopeptide receptor, J. Am. Chem. Soc. 2005, 127, 30–31

    Article  CAS  Google Scholar 

  42. Battiste, J. L.; Mao, H.; Rao, N. S.; Tan, R.; Muhandiram, D. R.; Kay, L. E.; Frankel, A. D.; Williamson, J. R., Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex, Science 1996, 273, 1547–1551

    Article  CAS  Google Scholar 

  43. Johnson, L. N.; Lewis, R. J., Structural basis for control by phosphorylation, Chem. Rev. 2001, 101, 2209–2242

    Article  CAS  Google Scholar 

  44. Chen, Z.; Gibson, T. B.; Robinson, F.; Silvestro, L.; Pearson, G.; Xu, B.; Wright, A.; Vanderbilt, C.; Cobb, M. H., MAP kinases, Chem. Rev. 2001, 101, 2449–2476

    Article  CAS  Google Scholar 

  45. Hunter, T., Protein modification: phosphorylation on tyrosine residues, Curr. Opin. Cell Biol. 1989, 1, 1168–1181

    Article  CAS  Google Scholar 

  46. Hunter, T., Signaling-2000 and beyond, Cell 2000, 100, 113–127

    Article  CAS  Google Scholar 

  47. Yan, J. X.; Packer, N. H.; Gooley, A. A.; Williams, K. L., Protein phosphorylation: technologies for the identification of phosphoamino acids, J. Chromatogr. A 1998, 808, 23–41

    Article  CAS  Google Scholar 

  48. Pestka, S.; Lin, L.; Wu, W.; Izotova, L., Introduction of protein kinase recognition sites into proteins: a review of their preparation, advantages, and applications, Protein Expr. Purif. 1999, 17, 203–214

    Article  CAS  Google Scholar 

  49. Machida, K.; Mayer, B. J.; Nollau, P., Profiling the global tyrosine phosphorylation state, Mol. Cell Proteomics 2003, 2, 215–233

    CAS  Google Scholar 

  50. Mandell, J. W., Phosphorylation state-specific antibodies: applications in investigative and diagnostic pathology, Am. J. Pathol. 2003, 163, 1687–1698

    CAS  Google Scholar 

  51. Rush, J.; Moritz, A.; Lee, K. A.; Guo, A.; Goss, V. L.; Spek, E. J.; Zhang, H.; Zha, X. M.; Polakiewicz, R. D.; Comb, M. J., Immunoaffinity profiling of tyrosine phosphorylation in cancer cells, Nat. Biotech. 2005, 23, 94–101

    Article  CAS  Google Scholar 

  52. Salomon, A. R.; Ficarro, S. B.; Brill, L. M.; Brinker, A.; Phung, Q. T.; Ericson, C.; Sauer, K.; Brock, A.; Horn, D. M.; Schultz, P. G.; Peters, E. C., Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry, Proc. Natl. Acad. Sci. USA 2003, 100, 443–448

    Article  CAS  Google Scholar 

  53. Blagoev, B.; Ong, S. E.; Kratchmarova, I.; Mann, M., Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics, Nat. Biotechnol. 2004, 22, 1139–1145

    Article  CAS  Google Scholar 

  54. Cotner, E. S.; Smith, P. J., Phosphotyrosine binding by ammonium- and guanidinium-modified cyclodextrins, J. Org. Chem. 1998, 63, 1737–1739

    Article  CAS  Google Scholar 

  55. Ojida, A.; Mito-oka, Y.; Inoue, M. A.; Hamachi, I., First artificial receptors and chemosensors toward phosphorylated peptide in aqueous solution, J. Am. Chem. Soc. 2002, 124, 6256–6258

    Article  CAS  Google Scholar 

  56. Ojida, A.; Mito-oka, Y.; Sada, K.; Hamachi, I., Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors, J. Am. Chem. Soc. 2004, 126, 2454–2463

    Article  CAS  Google Scholar 

  57. Hasegawa, T.; Ohkubo, K.; Yoshikawa, S.; Morii, T., A ribonucleopeptide receptor targets phosphotyrosine, e-J. Surf. Sci. Nanotech. 2005, 3, 33–37

    Article  CAS  Google Scholar 

  58. Hoffman, B. J.; Hansson, S.R.; Mezey, E.; Palkovits, M., Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system, Front. Neuroendocrinol. 1998, 19, 187–231

    Article  CAS  Google Scholar 

  59. Bloom, F. E.; Giarman, N. J., Physiologic and pharmacologic considerations of biogenic amines in the nervous system, Annu. Rev. Pharmacol. 1968, 8, 229–258

    Article  CAS  Google Scholar 

  60. Houghton, P. J.; Howes, M. J., Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease, Neurosignals. 2005, 14, 6–22

    Article  CAS  Google Scholar 

  61. Davis, B. A., Biogenic amines and their metabolites in body fluids of normal, psychiatric and neurological subjects, J. Chromatogr. 1989, 466, 89–218

    Article  CAS  Google Scholar 

  62. Fotopoulou, M. A.; Ioannou, P. C., Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography, Anal. Chim. Acta 2002, 462, 179–185

    Article  CAS  Google Scholar 

  63. Chan, E. C.; Wee, P. Y.; Ho, P. Y.; Ho, P. C., High-performance liquid chromatographic assay for catecholamines and metanephrines using fluorimetric detection with pre-column 9-fluore-nylmethyloxycarbonyl chloride derivatization, J. Chromatogr B Biomed. Sci. Appl. 2000, 749, 179–189

    Article  CAS  Google Scholar 

  64. Panholzer, T. J.; Beyer, J.; Lichtwald, K., Coupled-column liquid chromatographic analysis of catecholamines, serotonin, and metabolites in human urine, Clin. Chem. 1999, 45, 262–268

    CAS  Google Scholar 

  65. McKenzie, J. A.; Watson, C. J.; Rostand, R. D.; German, I.; Witowski, S. R.; Kennedy, R. T., Automated capillary liquid chromatography for simultaneous determination of neuroactive amines and amino acids, J. Chromatogr. A. 2002, 962, 105–115

    Article  CAS  Google Scholar 

  66. Raggi, M. A.; Sabbioni, C.; Casamenti, G.; Gerra, G.; Calonghi, N.; Masotti, L., Determination of catecholamines in human plasma by high-performance liquid chromatography with electrochemical detection, J. Chromatogr B Biomed. Sci. Appl. 1999, 730, 201–211

    Article  CAS  Google Scholar 

  67. Xu, F.; Gao, M.; Shi, G.; Wang, L.; Zhang, W.; Xue, J.; Jin, L.; Jin, J., Simultaneous detection of monoamines in rat striatal microdialysate at poly(para-aminobenzoic acid) modified electrode by high-performance liquid chromatography, Anal. Chim. Acta. 2001, 439, 239–246

    Article  CAS  Google Scholar 

  68. Slingerland, R. J.; van Kuilenburg, A. B.; Bodlaender, J. M.; Overmars, H.; Voûte, P. A.; van Gennip, A. H., High-performance liquid chromatographic analysis of biogenic amines in cells and in culture media using on-line dialysis and trace enrichment, J. Chromatogr B Biomed. Sci. Appl. 1998, 716, 65–75

    Article  CAS  Google Scholar 

  69. Grossi, G.; Bargossi, A.; Sprovieri, G.; Bernagozzi, V.; Pasquali, R., Full automation of serotonin determination by column-switching and HPLC, Chromatographia 1990, 30, 61–68

    Article  CAS  Google Scholar 

  70. Raymo, F. M.; Cejas, M. A., Supramolecular association of dopamine with immobilized fluorescent probes, Org. Lett. 2002, 4, 3183–3185

    Article  CAS  Google Scholar 

  71. Kim, J.; Raman, B.; Ahn, K. H., Artificial receptors that provides a preorganized hydrophobic environment: a biomimetic approach to dopamine recognition in water, J. Org. Chem. 2006, 71, 38–45

    Article  Google Scholar 

  72. Secor, K. E.; Glass, T. E., Selective amine recognition: development of a chemosensor for dopamine and norepinephrine, Org. Lett. 2004, 6, 3727–3730

    Article  CAS  Google Scholar 

  73. Tuerk, C.; Gold, L., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science 1990, 249, 505–510

    Article  CAS  Google Scholar 

  74. Mannironi, C.; Di Nardo, A.; Fruscoloni, P.; Tocchini-Valentini, G. P., In vitro selection of dopamine RNA ligands, Biochemistry 1997, 36, 9726–9734

    Article  CAS  Google Scholar 

  75. Majerfeld, I.; Puthenvedu, D.; Yarus, M., RNA affinity for molecular L-histidine; genetic code origins, J. Mol. Evol. 2005, 61, 226–235

    Article  CAS  Google Scholar 

  76. Famulok, M.; Szostak, J. W., Stereospecific recognition of tryptophan agarose by in vitro selected RNA, J. Am. Chem. Soc. 1992, 114, 3990–3991

    Article  CAS  Google Scholar 

  77. Weng, S.; Gu, K.; Hammond, P. W.; Lohse, P.; Rise, C.; Wagner, R. W.; Wright, M. C.; Kuimelis, R. G., Generating addressable protein microarrays with PROfusion covalent mRNA-protein fusion technology, Proteomics 2002, 2, 48–57

    Article  CAS  Google Scholar 

  78. Collett, J. R.; Cho, E. J.; Ellington, A. D., Production and processing of aptamer microarrays, Methods. 2005, 37, 4–15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Morii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Fukuda, M., Hasegawa, T., Hayashi, H., Morii, T. (2009). A Modular Strategy for Development of RNA-Based Fluorescent Sensors. In: Potyrailo, R.A., Mirsky, V.M. (eds) Combinatorial Methods for Chemical and Biological Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73713-3_10

Download citation

Publish with us

Policies and ethics