Skip to main content

Introduction to Combinatorial Methods for Chemical and Biological Sensors

  • Chapter
Combinatorial Methods for Chemical and Biological Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Sensing materials play a critical role in advancing selectivity, response speed, and sensitivity of chemical and biological determinations in gases and liquids. The desirable capabilities of sensing materials originate from their numerous functional parameters, which can be tailored to meet specific sensing needs. By increasing the structural and functional complexity of sensing materials, the ability to rationally define the precise requirements that will result in desired materials properties becomes increasingly limited. Combinatorial experimentation methodologies impact all areas of sensing materials research including inorganic, organic, and biological sensing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janata, J. Principles of Chemical Sensors; Plenum: New York, N Y, 1989

    Google Scholar 

  2. Fiber Optic Chemical Sensors and Biosensors; Wolfbeis, O. S., Ed.; CRC: Boca Raton, FL, 1991

    Google Scholar 

  3. Bakker, E.; Bühlmann, P.; Pretsch, E., Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics, Chem. Rev. 1997, 97, 3083–3132

    Article  CAS  Google Scholar 

  4. Potyrailo, R. A.; Hobbs, S. E.; Hieftje, G. M., Optical waveguide sensors in analytical chemistry: Today’s instrumentation, applications and future development trends, Fresenius’ J. Anal. Chem. 1998, 362, 349–373

    Article  CAS  Google Scholar 

  5. Janata, J.; Josowicz, M.; Vanysek, P.; DeVaney, D. M., Chemical sensors, Anal. Chem. 1998, 70, 179R–208R

    Article  CAS  Google Scholar 

  6. Wolfbeis, O. S., Fiber-optic chemical sensors and biosensors, Anal. Chem. 2006, 78, 3859–3874

    Article  CAS  Google Scholar 

  7. Franke, M. E.; Koplin, T. J.; Simon, U., Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter?, Small 2006, 2, 36–50

    Article  CAS  Google Scholar 

  8. Potyrailo, R. A., Polymeric sensor materials: Toward an alliance of combinatorial and rational design tools?, Angew. Chem. Int. Ed. 2006, 45, 702–723

    Article  CAS  Google Scholar 

  9. Bergman, I., Rapid-response atmospheric oxygen monitor based on fluorescence quenching, Nature 1968, 218, 396

    Article  CAS  Google Scholar 

  10. Hardy, E. E.; David, D. J.; Kapany, N. S.; Unterleitner, F. C., Coated optical guides for spectrophotometry of chemical reactions, Nature 1975, 257, 666–667

    Article  CAS  Google Scholar 

  11. Hirschfeld, T.; Callis, J. B.; Kowalski, B. R., Chemical sensing in process analysis, Science 1984, 226, 312–318

    Article  CAS  Google Scholar 

  12. Peterson, J. I.; Vurek, G. G., Fiber-optic sensors for biomedical applications, Science 1984, 224, 123–127

    Article  CAS  Google Scholar 

  13. Barnard, S. M.; Walt, D. R., A fibre-optic chemical sensor with discrete sensing sites, Nature 1991, 353, 338–340

    Article  Google Scholar 

  14. Tan, W.; Shi, Z.-Y.; Smith, S.; Birnbaum, D.; Kopelman, R., Submicrometer intracellular chemical optical fiber sensors, Science 1992, 258, 778–781

    Article  CAS  Google Scholar 

  15. Charych, D. H.; Nagy, J. O.; Spevak, W.; Bednarski, M. D., Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly, Science 1993, 261, 585–588

    Article  CAS  Google Scholar 

  16. Dickinson, T. A.; White, J.; Kauer, J. S.; Walt, D. R., A chemical-detecting system based on a cross-reactive optical sensor array, Nature 1996, 382, 697–700

    Article  CAS  Google Scholar 

  17. Holtz, J. H.; Asher, S. A., Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials, Nature 1997, 389, 829–832

    Article  CAS  Google Scholar 

  18. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science 1997, 277, 1078–1081

    Article  CAS  Google Scholar 

  19. Lin, V. S.-Y.; Motesharei, K.; Dancil, K.-P. S.; Sailor, M. J.; Ghadiri, M. R., A porous silicon-based optical interferometric biosensor, Science 1997, 278, 840–843

    Article  CAS  Google Scholar 

  20. Rakow, N. A.; Suslick, K. S., A colorimetric sensor array for odour visualization, Nature 2000, 406, 710–713

    Article  CAS  Google Scholar 

  21. Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H., Nanotube molecular wires as chemical sensors, Science 2000, 287, 622–625

    Article  CAS  Google Scholar 

  22. Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H., Smart single-chip gas sensor microsystem, Nature 2001, 414, 293–296

    Article  CAS  Google Scholar 

  23. Ivanisevic, A.; Yeh, J.-Y.; Mawst, L.; Kuech, T. F.; Ellis, A. B., Light-emitting diodes as chemical sensors, Nature 2001, 409, 476–476

    Article  CAS  Google Scholar 

  24. Janata, J.; Josowicz, M., Conducting polymers in electronic chemical sensors, Nature Mater. 2002, 2, 19–24

    Article  CAS  Google Scholar 

  25. Li, Y. Y.; Cunin, F.; Link, J. R.; Gao, T.; Betts, R. E.; Reiver, S. H.; Chin, V.; Bhatia, S. N.; Sailor, M. J., Polymer replicas of photonic porous silicon for sensing and drug delivery applications, Science 2003, 299, 2045–2047

    Article  CAS  Google Scholar 

  26. Alivisatos, A. P., The use of nanocrystals in biological detection, Nature Biotechnol. 2004, 22, 47–52

    Article  CAS  Google Scholar 

  27. Rose, A.; Zhu, Z.; Madigan, C. F.; Swager, T. M.; Bulovic, V., Sensitivity gains in chemosensing by lasing action in organic polymers, Nature 2005, 434, 876–879

    Article  CAS  Google Scholar 

  28. Potyrailo, R. A.; Ghiradella, H.; Vertiatchikh, A.; Dovidenko, K.; Cournoyer, J. R.; Olson, E., Morpho butterfly wing scales demonstrate highly selective vapour response, Nature Photonics 2007, 1, 123–128

    Article  CAS  Google Scholar 

  29. Armani, A. M.; Kulkarni, R. P.; Fraser, S. E.; Flagan, R. C.; Vahala, K. J., Label-free, single-molecule detection with optical microcavities, Science 2007, 317, 783–787

    Article  CAS  Google Scholar 

  30. Njagi, J.; Warner, J.; Andreescu, S., A bioanalytical chemistry experiment for undergraduate students: Biosensors based on metal nanoparticles, J Chem. Educ. 2007, 84, 1180–1182

    Article  CAS  Google Scholar 

  31. Shtoyko, T.; Zudans, I.; Seliskar, C. J.; Heineman, W. R.; Richardson, J. N., An attenuated total reflectance sensor for copper: An experiment for analytical or physical chemistry, J. Chem. Educ. 2004, 81, 1617–1619

    Article  CAS  Google Scholar 

  32. Honeybourne, C. L., Organic vapor sensors for food quality assessment, J. Chem. Educ. 2000, 77, 338–344

    Article  CAS  Google Scholar 

  33. Newnham, R. E., Structure-property relationships in sensors, Cryst. Rev. 1988, 1, 253–280

    Article  Google Scholar 

  34. Akporiaye, D. E., Towards a rational synthesis of large-pore zeolite-type materials?, Angew. Chem. Int. Ed. 1998, 37, 2456–2457

    Article  CAS  Google Scholar 

  35. Ulmer II, C. W.; Smith, D. A.; Sumpter, B. G.; Noid, D. I., Computational neural networks and the rational design of polymeric materials: The next generation polycarbonates, Comput. Theor. Polym. Sci. 1998, 8, 311–321

    Article  CAS  Google Scholar 

  36. Suman, M.; Freddi, M.; Massera, C.; Ugozzoli, F.; Dalcanale, E., Rational design of cavitand receptors for mass sensors, J.Am. Chem. Soc. 2003, 125, 12068–12069

    Article  CAS  Google Scholar 

  37. Lavigne, J. J.; Anslyn, E. V., Sensing a paradigm shift in the field of molecular recognition: From selective to differential receptors, Angew. Chem. Int. Ed. 2001, 40, 3119–3130

    Article  Google Scholar 

  38. Hatchett, D. W.; Josowicz, M., Composites of intrinsically conducting polymers as sensing nanomaterials, Chem. Rev. 2008, 108, 746–769

    Article  CAS  Google Scholar 

  39. Schatz, G. C., Using theory and computation to model nanoscale properties, Proc. Natl. Acad. Sci. USA 2007, 104, 6885–6892

    Article  CAS  Google Scholar 

  40. Peng, S.; Cho, K., Ab initio study of doped carbon nanotube sensors, Nano Lett. 2003, 3, 513–517

    Article  CAS  Google Scholar 

  41. Dmitriev, S.; Lilach, Y.; Button, B.; Moskovits, M.; Kolmakov, A., Nanoengineered chemiresistors: The interplay between electron transport and chemisorption properties of morphologically encoded sno2 nanowires, Nanotechnology 2007, 18, 055707

    Article  CAS  Google Scholar 

  42. Mirsky, V. M.; Vasjari, M.; Novotny, I.; Rehacek, V.; Tvarozek, V.; Wolfbeis, O. S., Self-assembled monolayers as selective filters for chemical sensors, Nanotechnology 2002, 13, 1–4

    Article  Google Scholar 

  43. Strohmeier, G. A.; Fabian, W. M. F.; Uray, G., A combined experimental and theoretical approach toward the development of optimized luminescent carbostyrils, Helvetica Chim. Acta 2004, 87, 215–226

    Article  CAS  Google Scholar 

  44. Abraham, M. H., Scales of solute hydrogen bonding: Their construction and application to physicochemical and biochemical processes, Chem. Soc. Rev. 1993, 22, 73–83

    Article  CAS  Google Scholar 

  45. Salvador, J. P.; Estevez, M. C.; Marco, M. P.; Sanchez-Baeza, F., A new methodology for the rational design of molecularly imprinted polymers, Anal. Lett. 2007, 40, 1294–1306.

    Article  CAS  Google Scholar 

  46. Hao, Q.; Wang, X.; Lu, L.; Yang, X.; Mirsky, V. M., Electropolymerized multilayer conducting polymers with response to gaseous hydrogen chloride, Macromol. Rapid Comm. 2005, 26, 1099–1103

    Article  CAS  Google Scholar 

  47. Badjic, J. D.; Kostic, N. M., Behavior of organic compounds confined in monoliths of sol-gel silica glass. Effects of guest-host hydrogen bonding on uptake, release, and isomerization of the guest compounds, J. Mater. Chem. 2001, 11, 408–418

    Article  CAS  Google Scholar 

  48. Cao, L.; Lin, H.; Mirsky, V. M., DNA-based surface plasmon resonance biosensor for enrofloxacin, Anal. Chim. Acta 2007, 589, 1–5

    Article  CAS  Google Scholar 

  49. Potyrailo, R. A.; Conrad, R. C.; Ellington, A. D.; Hieftje, G. M., Adapting selected nucleic acid ligands (aptamers) to biosensors, Anal. Chem. 1998, 70, 3419–3425

    Article  CAS  Google Scholar 

  50. Kaneko, H.; Minagawa, H.; Shimada, J., Rational design of thermostable lactate oxidase by analyzing quaternary structure and prevention of deamidation, Biotechn. Lett. 2005, 27, 1777–1784

    Article  CAS  Google Scholar 

  51. Schultz, P. G., Commentary on combinatorial chemistry, Appl. Catal., A 2003, 254, 3–4

    Article  CAS  Google Scholar 

  52. McKusick, B. C.; Heckert, R. E.; Cairns, T. L.; Coffman, D. D.; Mower, H. F., Cyanocarbon chemistry. VI. Tricyanovinylamines, J. Am. Chem. Soc. 1958, 80, 2806–2815

    Article  CAS  Google Scholar 

  53. Bühlmann, P.; Pretsch, E.; Bakker, E., Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors, Chem. Rev. 1998, 98, 1593–1687

    Article  Google Scholar 

  54. Steinle, E. D.; Amemiya, S.; Bühlmann, P.; Meyerhoff, M. E., Origin of non-nernstian anion response slopes of metalloporphyrin-based liquid/polymer membrane electrodes, Anal. Chem. 2000, 72, 5766–5773

    Article  CAS  Google Scholar 

  55. Pedersen, C. J., Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc. 1967, 89, 7017–7036

    Article  CAS  Google Scholar 

  56. Hu, Y.; Tan, O. K.; Pan, J. S.; Yao, X., A new form of nanosized srtio3 material for near-human-body temperature oxygen sensing applications, J. Phys. Chem. B 2004, 108, 11214–11218

    Article  CAS  Google Scholar 

  57. Svetlicic, V.; Schmidt, A. J.; Miller, L. L., Conductometric sensors based on the hypersensitive response of plasticized polyaniline films to organic vapors, Chem. Mater. 1998, 10, 3305–3307

    Article  CAS  Google Scholar 

  58. Martin, P. D.; Wilson, T. D.; Wilson, I. D.; Jones, G. R., An unexpected selectivity of a propranolol-derived molecular imprint for tamoxifen, Analyst 2001, 126, 757–759

    Article  CAS  Google Scholar 

  59. Potyrailo, R. A.; Sivavec, T. M., Boosting sensitivity of organic vapor detection with silicone block polyimide polymers, Anal. Chem. 2004, 76, 7023–7027

    Article  CAS  Google Scholar 

  60. Walt, D. R.; Dickinson, T.; White, J.; Kauer, J.; Johnson, S.; Engelhardt, H.; Sutter, J.; Jurs, P., Optical sensor arrays for odor recognition, Biosens. Bioelectron. 1998, 13, 697–699

    Article  CAS  Google Scholar 

  61. Eberhart, M. E.; Clougherty, D. P., Looking for design in materials design, Nature Mater. 2004, 3, 659–661

    Article  CAS  Google Scholar 

  62. A Practical Guide to Combinatorial Chemistry; Czarnik, A. W.; DeWitt, S. H., Eds.; American Chemical Society: Washington, DC, 1997

    Google Scholar 

  63. Frank, R.; Heikens, W.; Heisterberg-Moutsis, G.; Blocker, H., A new general approach for the simultaneous chemical synthesis of large numbers of oligonucleotides: Segmental solid supports, Nucl. Acid. Res. 1983, 11, 4365–4377

    Article  CAS  Google Scholar 

  64. Geysen, H. M.; Meloen, R. H.; Barteling, S. J., Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid, Proc. Natl Acad. Sci. USA 1984, 81, 3998–4002

    Article  CAS  Google Scholar 

  65. Houghten, R. A., General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids, Proc. Natl. Acad. Sci. USA 1985, 82, 5131–5135

    Article  CAS  Google Scholar 

  66. Lebl, M., Parallel personal comments on “classical” papers in combinatorial chemistry, J. Comb. Chem. 1999, 1, 3–24

    Article  CAS  Google Scholar 

  67. Jandeleit, B.; Schaefer, D. J.; Powers, T. S.; Turner, H. W.; Weinberg, W. H., Combinatorial materials science and catalysis, Angew. Chem. Int. Ed. 1999, 38, 2494–2532

    Article  CAS  Google Scholar 

  68. Maier, W.; Kirsten, G.; Orschel, M.; Weiß, P.-A.; Holzwarth, A.; Klein, J., Combinatorial chemistry of materials, polymers, and catalysts, In Combinatorial Approaches to Materials Development; Malhotra, R., Ed.; American Chemical Society: Washington, DC, 2002; Vol. 814; 1–21

    Chapter  Google Scholar 

  69. Combinatorial and Artificial Intelligence Methods in Materials Science; Takeuchi, I.; Newsam, J. M.; Wille, L. T.; Koinuma, H.; Amis, E. J., Eds.; Materials Research Society: Warrendale, PA, 2002; Vol. 700

    Google Scholar 

  70. Combinatorial Materials Synthesis; Xiang, X.-D.; Takeuchi, I., Eds.; Marcel Dekker: New York, NY, 2003

    Google Scholar 

  71. High Throughput Analysis: A Tool for Combinatorial Materials Science; Potyrailo, R. A.; Amis, E. J., Ed.; Kluwer/Plenum: New York, NY, 2003

    Google Scholar 

  72. Koinuma, H.; Takeuchi, I., Combinatorial solid state chemistry of inorganic materials, Nat. Mater. 2004, 3, 429–438

    Article  CAS  Google Scholar 

  73. Combinatorial and Artificial Intelligence Methods in Materials Science II; Potyrailo, R. A.; Karim, A.; Wang, Q.; Chikyow, T., Eds.; Materials Research Society: Warrendale, PA, 2004; Vol. 804

    Google Scholar 

  74. Special Feature on Combinatorial and High-Throughput Materials Research; Potyrailo, R. A.; Takeuchi, I., Ed.; Meas. Sci. Technol.: 2005; Vol. 16, 316

    Google Scholar 

  75. Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials; Potyrailo, R. A.; Maier, W. F., Eds.; CRC: Boca Raton, FL, 2006

    Google Scholar 

  76. Birina, G. A.; Boitsov, K. A., Experimental use of combinational and factorial plans for optimizing the compositions of electronic materials, Zavodskaya Laboratoriya (in Russian) 1974, 40, 855–857

    CAS  Google Scholar 

  77. Kennedy, K.; Stefansky, T.; Davy, G.; Zackay, V. F.; Parker, E. R., Rapid method for determining ternary-alloy phase diagrams, J. Appl. Phys. 1965, 36, 3808–3810

    Article  CAS  Google Scholar 

  78. Hoffmann, R., Not a library, Angew. Chem. Int. Ed. 2001, 40, 3337–3340

    Article  CAS  Google Scholar 

  79. Hoogenboom, R.; Meier, M. A. R.; Schubert, U. S., Combinatorial methods, automated synthesis and high-throughput screening in polymer research: Past and present, Macromol. Rapid Commun. 2003, 24, 15–32

    Article  CAS  Google Scholar 

  80. Anderson, F. W.; Moser, J. H., Automatic computer program for reduction of routine emission spectrographic data, Anal. Chem. 1958, 30, 879–881

    Article  CAS  Google Scholar 

  81. Eash, M. A.; Gohlke, R. S., Mass spectrometric analysis. A small computer program for the analysis of mass spectra, Anal. Chem. 1962, 34, 713–713

    Article  CAS  Google Scholar 

  82. Hanak, J. J., The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems, J. Mater. Sci. 1970, 5, 964–971

    Article  CAS  Google Scholar 

  83. Xiang, X.-D.; Sun, X.; Briceño, G.; Lou, Y.; Wang, K.-A.; Chang, H.; Wallace-Freedman, W. G.; Chen, S.-W.; Schultz, P. G., A combinatorial approach to materials discovery, Science 1995, 268, 1738–1740

    Article  CAS  Google Scholar 

  84. Chang, H.; Gao, C.; Takeuchi, I.; Yoo, Y.; Wang, J.; Schultz, P. G.; Xiang, X.-D.; Sharma, R. P.; Downes, M.; Venkatesan, T., Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin-film libraries for microwave applications, Appl. Phys. Lett. 1998, 72, 2185–2187

    Article  CAS  Google Scholar 

  85. Briceño, G.; Chang, H.; Sun, X.; Schultz, P. G.; Xiang, X.-D., A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis, Science 1995, 270, 273–275

    Article  Google Scholar 

  86. Danielson, E.; Devenney, M.; Giaquinta, D. M.; Golden, J. H.; Haushalter, R. C.; McFarland, E. W.; Poojary, D. M.; Reaves, C. M.; Weinberg, W. H.; Wu, X. D., A rare-earth phosphor containing one-dimensional chains identified through combinatorial methods, Science 1998, 279, 837–839

    Article  CAS  Google Scholar 

  87. Wong, D. W.; Robertson, G. H., Combinatorial chemistry and its applications in agriculture and food, Adv. Exp. Med. Biol. 1999, 464, 91–105

    CAS  Google Scholar 

  88. Zhao, J.-C., A combinatorial approach for structural materials, Adv. Eng. Mat. 2001, 3, 143–147

    Article  CAS  Google Scholar 

  89. Olk, C. H., Combinatorial approach to material synthesis and screening of hydrogen storage alloys, Meas. Sci. Technol. 2005, 16, 14–20

    Article  CAS  Google Scholar 

  90. Zou, L.; Savvate’ev, V.; Booher, J.; Kim, C.-H.; Shinar, J., Combinatorial fabrication and studies of intense efficient ultraviolet-violet organic light-emitting device arrays, Appl. Phys. Lett. 2001, 79, 2282–2284

    Article  CAS  Google Scholar 

  91. Takeuchi, I.; Famodu, O. O.; Read, J. C.; Aronova, M. A.; Chang, K.-S.; Craciunescu, C.; Lofland, S. E.; Wuttig, M.; Wellstood, F. C.; Knauss, L.; Orozco, A., Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads, Nat. Mater. 2003, 2, 180–184

    Article  CAS  Google Scholar 

  92. Cui, J.; Chu, Y. S.; Famodu, O. O.; Furuya, Y.; Hattrick-Simpers, J.; James, R. D.; Ludwig, A.; Thienhaus, S.; Wuttig, M.; Zhang, Z.; Takeuchi, I., Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater. 2006, 5, 286–290

    Article  CAS  Google Scholar 

  93. Holzwarth, A.; Schmidt, H.-W.; Maier, W., Detection of catalytic activity in combinatorial libraries of heterogeneous catalysts by IR thermography, Angew. Chem. Int. Ed. 1998, 37, 2644–2647

    Article  CAS  Google Scholar 

  94. Cooper, A. C.; McAlexander, L. H.; Lee, D.-H.; Torres, M. T.; Crabtree, R. H., Reactive dyes as a method for rapid screening of homogeneous catalysts, J. Am. Chem. Soc. 1998, 120, 9971–9972

    Article  CAS  Google Scholar 

  95. Lemmon, J. P.; Wroczynski, R. J.; Whisenhunt Jr., D. W.; Flanagan, W. P., High throughput strategies for monomer and polymer synthesis and characterization, Polym. Prepr. 2001, 42, 630–631

    CAS  Google Scholar 

  96. Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E., Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts, Science 1998, 280, 1735–1737

    Article  CAS  Google Scholar 

  97. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater. 2006, 5, 909–913

    Article  CAS  Google Scholar 

  98. Brocchini, S.; James, K.; Tangpasuthadol, V.; Kohn, J., A combinatorial approach for polymer design, J. Am. Chem. Soc. 1997, 119, 4553–4554

    Article  CAS  Google Scholar 

  99. Lai, R.; Kang, B. S.; Gavalas, G. R., Parallel synthesis of ZSM-5 zeolite films from clear organic-free solutions, Angew. Chem., Int. Ed. 2001, 40, 408–411

    Article  CAS  Google Scholar 

  100. Ramirez, A. G.; Saha, R., Combinatorial studies for determining properties of thin-film gold-cobalt alloys, Appl. Phys. Lett. 2004, 85, 5215–5217

    Article  CAS  Google Scholar 

  101. Jiang, R.; Rong, C.; Chu, D., Combinatorial approach toward high-throughput analysis of direct methanol fuel cells, J. Comb. Chem. 2005, 7, 272–278

    Article  CAS  Google Scholar 

  102. Lemmon, J. P.; Manivannan, V.; Jordan, T.; Hassib, L.; Siclovan, O.; Othon, M.; Pilliod, M., High throughput screening of materials for solid oxide fuel cells, In Combinatorial and Artificial Intelligence Methods in Materials Science II. MRS Symposium Proceedings; Potyrailo, R. A.; Karim, A.; Wang Q.; Chikyow, T., Eds.; Materials Research Society: Warrendale, PA, 2004; Vol. 804; 27–32

    Google Scholar 

  103. Hänsel, H.; Zettl, H.; Krausch, G.; Schmitz, C.; Kisselev, R.; Thelakkat, M.; Schmidt, H.-W., Combinatorial study of the long-term stability of organic thin-film solar cells, Appl. Phys. Lett. 2002, 81, 2106–2108

    Article  CAS  Google Scholar 

  104. Chisholm, B. J.; Potyrailo, R. A.; Cawse, J. N.; Shaffer, R. E.; Brennan, M. J.; Moison, C.; Whisenhunt, D. W.; Flanagan, W. P.; Olson, D. R.; Akhave, J. R.; Saunders, D. L.; Mehrabi, A.; Licon, M., The development of combinatorial chemistry methods for coating development I. Overview of the experimental factory, Prog. Org. Coat. 2002, 45, 313–321

    Article  CAS  Google Scholar 

  105. Wicks, D. A.; Bach, H., The coming revolution for coatings science: High throughput screening for formulations, Proceedings of The 29th Int. Waterborne, High-Solids, and Powder Coat. Symp. 2002, 29, 1–24

    Google Scholar 

  106. Grunlan, J. C.; Mehrabi, A. R.; Chavira, A. T.; Nugent, A. B.; Saunders, D. L., Method for combinatorial screening of moisture vapor transmission rate, J. Comb. Chem. 2003, 5, 362–368

    Article  CAS  Google Scholar 

  107. Stafslien, S. J.; Bahr, J. A.; Feser, J. M.; Weisz, J. C.; Chisholm, B. J.; Ready, T. E.; Boudjouk, P., Combinatorial materials research applied to the development of new surface coatings I: A multiwell plate screening method for the high-throughput assessment of bacterial biofilm retention on surfaces, J. Comb. Chem. 2006, 8, 156–162

    Article  CAS  Google Scholar 

  108. Ekin, A.; Webster, D. C., Combinatorial and high-throughput screening of the effect of siloxane composition on the surface properties of crosslinked siloxane-polyurethane coatings, J. Comb. Chem. 2007, 9, 178–188

    Article  CAS  Google Scholar 

  109. Potyrailo, R. A.; Chisholm, B. J.; Olson, D. R.; Brennan, M. J.; Molaison, C. A., Development of combinatorial chemistry methods for coatings: High-throughput screening of abrasion resistance of coatings libraries, Anal. Chem. 2002, 74, 5105–5111

    Article  CAS  Google Scholar 

  110. Potyrailo, R. A.; Chisholm, B. J.; Morris, W. G.; Cawse, J. N.; Flanagan, W. P.; Hassib, L.; Molaison, C. A.; Ezbiansky, K.; Medford, G.; Reitz, H., Development of combinatorial chemistry methods for coatings: High-throughput adhesion evaluation and scale-up of combinatorial leads, J. Comb. Chem. 2003, 5, 472–478

    Article  CAS  Google Scholar 

  111. MacLean, D.; Baldwin, J. J.; Ivanov, V. T.; Kato, Y.; Shaw, A.; Schneider, P.; Gordon, E. M., Glossary of terms used in combinatorial chemistry, J. Comb. Chem. 2000, 2, 562–578

    Article  CAS  Google Scholar 

  112. Potyrailo, R. A.; Takeuchi, I., Role of high-throughput characterization tools in combinatorial materials science, Meas. Sci. Technol. 2005, 16, 1–4

    Article  CAS  Google Scholar 

  113. Cohan, P. E., Combinatorial materials science applied – mini case studies, lessons and strategies, In Combi 2002 – the 4th Annual International Symposium on Combinatorial Approaches for New Materials Discovery; Knowledge Foundation: Arlington, VA, 2002

    Google Scholar 

  114. Siemons, M.; Koplin, T. J.; Simon, U., Advances in high throughput screening of gas sensing materials, Appl. Surf. Sci. 2007, Appl. Surf. Sci. 2007, 254, 669–676

    Article  CAS  Google Scholar 

  115. Qin, L.; Zou, S.; Xue, C.; Atkinson, A.; Schatz, G. C.; Mirkin, C. A., Designing, fabricating, and imaging raman hot spots, Proc. Natl. Acad. Sci. USA 2006, 103, 13300–13303

    Article  CAS  Google Scholar 

  116. Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A.; Ong, K. G., Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes, Nanotechnology 2006, 17, 398–402

    Article  CAS  Google Scholar 

  117. Lu, Y.; Liu, J.; Li, J.; Bruesehoff, P. J.; Pavot, C. M.-B.; Brown, A. K., New highly sensitivie and selective catalytic DNA biosensors for metal ions, Biosens. Bioelectron. 2003, 18, 529–540

    Article  CAS  Google Scholar 

  118. Hirsch, T.; Kettenberger, H.; Wolfbeis, O. S.; Mirsky, V. M., A simple strategy for preparation of sensor arrays: Molecularly structured monolayers as recognition elements, Chem. Commun. 2003, 432–433

    Google Scholar 

  119. Hermann, T.; Patel, D. J., Adaptive recognition by nucleic acid aptamers, Science 2000, 287, 820–825

    Article  CAS  Google Scholar 

  120. Cho, E. J.; Tao, Z.; Tang, Y.; Tehan, E. C.; Bright, F. V.; Hicks, W. L., Jr.; Gardella, J. A., Jr.; Hard, R., Tools to rapidly produce and screen biodegradable polymer and sol-gel-derived xerogel formulations, Appl. Spectrosc. 2002, 56, 1385–1389

    Article  CAS  Google Scholar 

  121. Mirsky, V. M.; Riepl, M.; Wolfbeis, O. S., Capacitive monitoring of protein immobilization and antigen-antibody reaction on the mono-molecular films of alkylthiols adsorbed on gold electrodes, Biosens. Bioelectron. 1997, 12, 977–989

    Article  CAS  Google Scholar 

  122. Rege, K.; Raravikar, N. R.; Kim, D.-Y.; Schadler, L. S.; Ajayan, P. M.; Dordick, J. S., Enzyme-polymer-single walled carbon nanotube composites as biocatalytic films, Nano Lett. 2003, 3, 829–832

    Article  CAS  Google Scholar 

  123. Kramer, K.; Hock, B., Antibodies for biosensors, In Ultrathin Electrochemical Chemo- and Biosensors; Mirsky, V. M., Ed.; Springer: Berlin, Germany, 2004

    Google Scholar 

  124. Matzger, A. J.; Lawrence, C. E.; Grubbs, R. H.; Lewis, N. S., Combinatorial approaches to the synthesis of vapor detector arrays for use in an electronic nose, J. Comb. Chem. 2000, 2, 301–304

    Article  CAS  Google Scholar 

  125. Apostolidis, A.; Klimant, I.; Andrzejewski, D.; Wolfbeis, O. S., A combinatorial approach for development of materials for optical sensing of gases, J. Comb. Chem. 2004, 6, 325–331

    Article  CAS  Google Scholar 

  126. Deans, R.; Kim, J.; Machacek, M. R.; Swager, T. M., A poly(p-phenyleneethynylene) with a highly emissive aggregated phase, J. Am. Chem. Soc. 2000, 122, 8565–8566

    Article  CAS  Google Scholar 

  127. Lavastre, O.; Illitchev, I.; Jegou, G.; Dixneuf, P. H., Discovery of new fluorescent materials from fast synthesis and screening of conjugated polymers, J. Am. Chem. Soc. 2002, 124, 5278–5279

    Article  CAS  Google Scholar 

  128. Zhou, Y.; Freitag, M.; Hone, J.; Staii, C.; Johnson, A. T.; Pinto, N. J.; MacDiarmid, A. G., Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm, Appl. Phys. Lett. 2003, 83, 3800–3802

    Article  CAS  Google Scholar 

  129. Bever, M. B.; Duwez, P. E., Gradients in composite materials, Mater. Sci. Eng. 1972, 10, 1–8

    Article  CAS  Google Scholar 

  130. Shen, M.; Bever, M. B., Gradients in polymeric materials, J. Mater. Sci. 1972, 7, 741–746

    Article  CAS  Google Scholar 

  131. Pompe, W.; Worch, H.; Epple, M.; Friess, W.; Gelinsky, M.; Greil, P.; Hempel, U.; Scharnweber, D.; Schulte, K., Functionally graded materials for biomedical applications, Mater. Sci. Eng. A 2003, 362, 40–60

    Article  CAS  Google Scholar 

  132. Taylor, C. J.; Semancik, S., Use of microhotplate arrays as microdeposition substrates for materials exploration, Chem. Mater. 2002, 14, 1671–1677

    Article  CAS  Google Scholar 

  133. Aronova, M. A.; Chang, K. S.; Takeuchi, I.; Jabs, H.; Westerheim, D.; Gonzalez-Martin, A.; Kim, J.; Lewis, B., Combinatorial libraries of semiconductor gas sensors as inorganic electronic noses, Appl. Phys. Lett. 2003, 83, 1255–1257

    Article  CAS  Google Scholar 

  134. Potyrailo, R. A., Sensors in combinatorial polymer research, Macromol. Rapid Comm. 2004, 25, 77–94

    Article  CAS  Google Scholar 

  135. Amis, E. J., Combinatorial materials science reaching beyond discovery, Nat. Mater. 2004, 3, 83–85

    Article  CAS  Google Scholar 

  136. Scheidtmann, J.; Frantzen, A.; Frenzer, G.; Maier, W. F., A combinatorial technique for the search of solid state gas sensor materials, Meas. Sci. Technol. 2005, 16, 119–127

    Article  CAS  Google Scholar 

  137. Potyrailo, R. A.; Morris, W. G.; Leach, A. M.; Hassib, L.; Krishnan, K.; Surman, C.; Wroczynski, R.; Boyette, S.; Xiao, C.; Shrikhande, P.; Agree, A.; Cecconie, T., Theory and practice of ubiquitous quantitative chemical analysis using conventional computer optical disk drives, Appl. Opt. 2007, 46, 7007–7017

    Article  Google Scholar 

  138. Dickinson, T. A.; Walt, D. R.; White, J.; Kauer, J. S., Generating sensor diversity through combinatorial polymer synthesis, Anal. Chem. 1997, 69, 3413–3418

    Article  CAS  Google Scholar 

  139. Potyrailo, R. A.; Wroczynski, R. J., Spectroscopic and imaging approaches for evaluation of properties of one-dimensional arrays of formulated polymeric materials fabricated in a combinatorial microextruder system, Rev. Sci. Instrum. 2005, 76, 062222

    Article  CAS  Google Scholar 

  140. Sysoev, V. V.; Kiselev, I.; Frietsch, M.; Goschnick, J., Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor microarray, Sensors 2004, 4, 37–46

    Article  CAS  Google Scholar 

  141. Klingvall, R.; Lundström, I.; Löfdahl, M.; Eriksson, M., A combinatorial approach for field-effect gas sensor research and development, IEEE Sens. J. 2005, 5, 995–1003

    Article  CAS  Google Scholar 

  142. Baker, B. E.; Kline, N. J.; Treado, P. J.; Natan, M. J., Solution-based assembly of metal surfaces by combinatorial methods, J. Am. Chem. Soc. 1996, 118, 8721–8722

    Article  CAS  Google Scholar 

  143. Potyrailo, R. A.; Hassib, L., Analytical instrumentation infrastructure for combinatorial and high-throughput development of formulated discrete and gradient polymeric sensor materials arrays, Rev. Sci. Instrum. 2005, 76, 062225

    Article  CAS  Google Scholar 

  144. Handbook of Chemical and Biological Sensors; Taylor, R. F.; Schultz, J. S., Eds.; IOP Publishing: Bristol, UK, 1996

    Google Scholar 

  145. Carrano, J. C.; Jeys, T.; Cousins, D.; Eversole, J.; Gillespie, J.; Healy, D.; Licata, N.; Loerop, W.; O’Keefe, M.; Samuels, A.; Schultz, J.; Walter, M.; Wong, N.; Billotte, B.; Munley, M.; Reich, E.; Roos, J., Chemical and biological sensor standards study (CBS3), In Optically Based Biological and Chemical Sensing for Defence; Carrano, J. C.; Zukauskas, A. Eds.; SPIE – The International Society for Optical Engineering: Bellingham, WA, 2004; Vol. 5617; xi–xiii

    Google Scholar 

  146. Meyerhoff, M. E., In vivo blood-gas and electrolyte sensors: Progress and challenges, Trends Anal. Chem. 1993, 12, 257–266

    Article  CAS  Google Scholar 

  147. Clark, K. J. R.; Furey, J., Suitability of selected single-use process monitoring and control technology, BioProcess Int. 2006, 4(6), S16–S20

    Google Scholar 

  148. Newman, J. D.; Turner, A. P. F., Home blood glucose biosensors: A commercial perspective, Biosens. Bioelectron. 2005, 20, 2435–2453

    Article  CAS  Google Scholar 

  149. Pickup, J. C.; Alcock, S., Clinicians’ requirements for chemical sensors for in vivo monitoring: A multinational survey, Biosens. Bioelectron. 1991, 6, 639–646

    Article  CAS  Google Scholar 

  150. Eriksson, M.; Klingvall, R.; Lundström, I., A combinatorial method for optimization of materials for gas sensitive field-effect devices, In Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials; Potyrailo, R. A.; Maier, W. F. Eds.; CRC: Boca Raton, FL, 2006; 85–95

    Chapter  Google Scholar 

  151. Lundström, I.; Sundgren, H.; Winquist, F.; Eriksson, M.; Krantz-Rülcker, C.; Lloyd-Spetz, A., Twenty-five years of field effect gas sensor research in Linköping, Sens. Actuators B 2007, 121, 247–262

    Article  CAS  Google Scholar 

  152. Goschnick, J.; Koronczi, I.; Frietsch, M.; Kiselev, I., Water pollution recognition with the electronic nose kamina, Sens. Actuators B 2005, 106, 182–186

    Article  CAS  Google Scholar 

  153. Mazza, T.; Barborini, E.; Kholmanov, I. N.; Piseri, P.; Bongiorno, G.; Vinati, S.; Milania, P.; Ducati, C.; Cattaneo, D.; Li Bassi, A.; Bottani, C. E.; Taurino, A. M.; Siciliano, P., Libraries of cluster-assembled titania films for chemical sensing, Appl. Phys. Lett. 2005, 87, 103–108

    Article  CAS  Google Scholar 

  154. Korotcenkov, G., Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches, Sens. Actuators B 2005, 107, 209–232

    Article  CAS  Google Scholar 

  155. Barsan, N.; Koziej, D.; Weimar, U., Metal oxide-based gas sensor research: How to? Sens. Actuators B 2007, 121, 18–35

    Article  CAS  Google Scholar 

  156. Semancik, S. Correlation of chemisorption and electronic effects for metal oxide interfaces: Transducing principles for temperature programmed gas microsensors. Final technical report project number: Emsp 65421, grant number: 07-98er62709; US Department of Energy Information Bridge: 2002, pp http://www.osti.gov/bridge/

  157. Semancik, S., Temperature-dependent materials research with micromachined array platforms, In Combinatorial Materials Synthesis; Xiang, X.-D.; Takeuchi, I., Eds.; Marcel Dekker: New York, NY, 2003; 263–295

    Google Scholar 

  158. Simon, U.; Sanders, D.; Jockel, J.; Heppel, C.; Brinz, T., Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials, J. Comb. Chem. 2002, 4, 511–515

    Article  CAS  Google Scholar 

  159. Simon, U.; Sanders, D.; Jockel, J.; Brinz, T., Setup for high-throughput impedance screening of gas-sensing materials, J. Comb. Chem. 2005, 7, 682–687

    Article  CAS  Google Scholar 

  160. Frantzen, A.; Scheidtmann, J.; Frenzer, G.; Maier, W. F.; Jockel, J.; Brinz, T.; Sanders, D.; Simon, U., High-throughput method for the impedance spectroscopic characterization of resistive gas sensors, Angew. Chem. Int. Ed. 2004, 43, 752–754

    Article  CAS  Google Scholar 

  161. Sanders, D.; Simon, U., High-throughput gas sensing screening of surface-doped In2O3, J. Comb. Chem. 2007, 9, 53–61

    Article  CAS  Google Scholar 

  162. Siemons, M.; Simon, U., Preparation and gas sensing properties of nanocrystalline la-doped CoTiO3, Sens. Actuators B 2006, 120, 110–118

    Article  CAS  Google Scholar 

  163. Siemons, M.; Simon, U., Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method, Sens. Actuators B 2007, Sens. Actuators B 2007, 126, 595–603

    Article  CAS  Google Scholar 

  164. Siemons, M.; Simon, U., High throughput screening of the propylene and ethanol sensing properties of rare-earth orthoferrites and orthochromites, Sens. Actuators B 2007, 126, 181–186

    Article  CAS  Google Scholar 

  165. Nakagawa, M.; Okabayashi, T.; Fujimoto, T.; Utsunomiya, K.; Yamamoto, I.; Wada, T.; Yamashita, Y.; Yamashita, N., A new method for recognizing organic vapor by spectroscopic image on cataluminescence-based gas sensor, Sens. Actuators B 1998, 51, 159–162

    Article  Google Scholar 

  166. Nakagawa, M.; Yamashita, N., Cataluminescence-based gas sensors, Springer Ser. Chem. Sens. Biosens. 2005, 3, 93–132

    Article  CAS  Google Scholar 

  167. Kahl, M.; Voges, E.; Kostrewa, S.; Viets, C.; Hill, W., Periodically structured metallic substrates for SERS, Sens. Actuators B 1998, 51, 285–291

    Article  Google Scholar 

  168. Han, M. S.; Lytton-Jean, A. K. R.; Oh, B.-K.; Heo, J.; Mirkin, C. A., Colorimetric screening of DNA-binding molecules with gold nanoparticle probes, Angew. Chem. Int. Ed. 2006, 45, 1807–1810

    Article  CAS  Google Scholar 

  169. Dovidenko, K.; Potyrailo, R. A.; Grande, J., Focused ion beam microscope as an analytical tool for nanoscale characterization of gradient-formulated polymeric sensor materials, In Combinatorial Methods and Informatics in Materials Science. MRS Symposium Proceedings; Fasolka, M.; Wang, Q.; Potyrailo, R. A.; Chikyow, T.; Schubert, U. S.; Korkin, A., Eds.; Materials Research Society: Warrendale, PA, 2006; Vol. 894; 231–236

    Google Scholar 

  170. Bhat, R. R.; Genzer, J., Combinatorial study of nanoparticle dispersion in surface-grafted macromolecular gradients, Appl. Surf. Sci. 2005, 252, 2549–2554

    Article  CAS  Google Scholar 

  171. Bhat, R. R.; Tomlinson, M. R.; Wu, T.; Genzer, J., Surface-grafted polymer gradients: Formation, characterization and applications, Adv. Polym. Sci. 2006, 198, 51–124

    Article  CAS  Google Scholar 

  172. Bhat, R. R.; Genzer, J., Tuning the number density of nanoparticles by multivariant tailoring of attachment points on flat substrates, Nanotechnology 2007, 18, 025301

    Article  CAS  Google Scholar 

  173. Demers, L. M.; Mirkin, C. A., Combinatorial templates generated by dip-pen nanolithography for the formation of two-dimensional particle arrays, Angew. Chem. Int. Ed. 2001, 40, 3069–3071

    Article  CAS  Google Scholar 

  174. Ivanisevic, A.; McCumber, K. V.; Mirkin, C. A., Site-directed exchange studies with combinatorial libraries of nanostructures, J. Am. Chem. Soc. 2002, 124, 11997–12001

    Article  CAS  Google Scholar 

  175. Potyrailo, R. A.; Leach, A. M., Gas sensor materials based on semiconductor nanocrystal/ polymer composite films, In Proceedings of Transducers’05, the 13th International Conference on Solid-state Sensors, Actuators and Microsystems, Seoul, Korea, June 5–9, 2005; 1292–1295

    Google Scholar 

  176. Potyrailo, R. A.; Leach, A. M., Selective gas nanosensors with multisize cdse nanocrystal/polymer composite films and dynamic pattern recognition, Appl. Phys. Lett. 2006, 88, 134110

    Article  CAS  Google Scholar 

  177. Leach, A. M.; Potyrailo, R. A., Gas sensor materials based on semiconductor nanocrystal/polymer composite films, In Combinatorial Methods and Informatics in Materials Science. MRS Symposium Proceedings; Wang, Q.; Potyrailo, R. A.; Fasolka, M.; Chikyow, T.; Schubert, U. S.; Korkin, A., Eds.; Materials Research Society: Warrendale, PA, 2006; Vol. 894; 237–243

    Google Scholar 

  178. Singh, A.; Yao, Q.; Tong, L.; Still, W. C.; Sames, D., Combinatorial approach to the development of fluorescent sensors for nanomolar aqueous copper, Tetrahedron Lett. 2000, 41, 9601–9605

    Article  CAS  Google Scholar 

  179. Szurdoki, F.; Ren, D.; Walt, D. R., A combinatorial approach to discover new chelators for optical metal ion sensing, Anal. Chem. 2000, 72, 5250–5257

    Article  CAS  Google Scholar 

  180. Castillo, M.; Rivero, I. A., Combinatorial synthesis of fluorescent trialkylphosphine sulfides as sensor materials for metal ions of environmental concern, ARKIVOC 2003, 11, 193–202

    Google Scholar 

  181. Mello, J. V.; Finney, N. S., Reversing the discovery paradigm: A new approach to the combinatorial discovery of fluorescent chemosensors, J. Am. Chem. Soc. 2005, 127, 10124–10125

    Article  Google Scholar 

  182. Hagihara, M.; Fukuda, M.; Hasegawa, T.; Morii, T., A modular strategy for tailoring fluorescent biosensors from ribonucleopeptide complexes, J. Am. Chem. Soc. 2006, 128, 12932–12940

    Article  CAS  Google Scholar 

  183. Wang, S.; Chang, Y.-T., Combinatorial synthesis of benzimidazolium dyes and its diversity directed application toward gtp-selective fluorescent chemosensors, J. Am. Chem. Soc. 2006, 128, 10380–10381

    Article  CAS  Google Scholar 

  184. Buryak, A.; Severin, K., Dynamic combinatorial libraries of dye complexes as sensors, Angew. Chem. Int. Ed. 2005, 44, 7935–7938

    Article  CAS  Google Scholar 

  185. Buryak, A.; Severin, K., Easy to optimize: Dynamic combinatorial libraries of metal-dye complexes as flexible sensors for tripeptides, J. Comb. Chem. 2006, 8, 540–543

    Article  CAS  Google Scholar 

  186. Li, Q.; Lee, J.-S.; Ha, C.; Park, C. B.; Yang, G.; Gan, W. B.; Chang, Y.-T., Solid-phase synthesis of styryl dyes and their application as amyloid sensors, Angew. Chem. Int. Ed. 2004, 46, 6331–6335

    Article  CAS  Google Scholar 

  187. Rosania, G. R.; Lee, J. W.; Ding, L.; Yoon, H.-S.; Chang, Y.-T., Combinatorial approach to organelle-targeted fluorescent library based on the styryl scaffold, J. Am. Chem. Soc. 2003, 125, 1130–1131

    Article  CAS  Google Scholar 

  188. Shedden, K.; Brumer, J.; Chang, Y. T.; Rosania, G. R., Chemoinformatic analysis of a supertargeted combinatorial library of styryl molecules, J. Chem. Inf. Comput. Sci. 2003, 43, 2068–2080

    CAS  Google Scholar 

  189. Basabe-Desmonts, L.; Beld, J.; Zimmerman, R. S.; Hernando, J.; Mela, P.; Garcia Parajo, M. F.; van Hulst, N. F.; van den Berg, A.; Reinhoudt, D. N.; Crego-Calama, M., A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass, J. Am. Chem. Soc. 2004, 126, 7293–7299

    Article  CAS  Google Scholar 

  190. Basabe-Desmonts, L.; Zimmerman, R. S.; Reinhoudt, D. N.; Crego-Calama, M., Combinatorial method for surface-confined sensor design and fabrication, Springer Ser. Chem. Sens. Biosens. 2005, 3, 169–188

    Article  CAS  Google Scholar 

  191. Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M., Combinatorial fabrication of fluorescent patterns with metal ions using soft lithography, Adv. Mater. 2006, 18, 1028–1032

    Article  CAS  Google Scholar 

  192. Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M., Design of fluorescent materials for chemical sensing, Chem. Soc. Rev. 2007, 36, 993–1017

    Article  CAS  Google Scholar 

  193. Chojnacki, P.; Werner, T.; Wolfbeis, O. S., Combinatorial approach towards materials for optical ion sensors, Microchim. Acta 2004, 147, 87–92

    Article  CAS  Google Scholar 

  194. Potyrailo, R. A., Expanding combinatorial methods from automotive to sensor coatings, Polym. Mate. Sci. Eng. Polym. Prepr. 2004, 90, 797–798

    CAS  Google Scholar 

  195. Hassib, L.; Potyrailo, R. A., Combinatorial development of polymer coating formulations for chemical sensor applications, Polym. Prepr. 2004, 45, 211–212

    CAS  Google Scholar 

  196. Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J., Acoustic-wave sensors for high-throughput screening of materials, In High Throughput Analysis: A Tool for Combinatorial Materials Science; Potyrailo, R. A.; Amis, E. J., Eds.; Kluwer/Plenum: New York, NY, 2003; ch. 11

    Google Scholar 

  197. Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J., Multifunctional sensor system for highthroughput primary, secondary, and tertiary screening of combinatorially developed materials, Rev. Sci. Instrum. 2004, 75, 2177–2186

    Article  CAS  Google Scholar 

  198. Potyrailo, R. A.; McCloskey, P. J.; Ramesh, N.; Surman, C. M. Sensor devices containing co-polymer substrates for analysis of chemical and biological species in water and air; US Patent Application 2005133697: 2005

    Google Scholar 

  199. Potyrailo, R. A.; McCloskey, P. J.; Wroczynski, R. J.; Morris, W. G., High-throughput determination of quantitative structure-property relationships using resonant multisensor system: Solvent-resistance of bisphenol a polycarbonate copolymers, Anal. Chem. 2006, 78, 3090–3096

    Article  CAS  Google Scholar 

  200. Potyrailo, R. A.; Morris, W. G., Wireless resonant sensor array for high-throughput screening of materials, Rev. Sci. Instrum. 2007, 78, 072214

    Article  CAS  Google Scholar 

  201. Wu, X.; Kim, J.; Dordick, J. S., Enzymatically and combinatorially generated array-based polyphenol metal ion sensor, Biotechnol. Prog. 2000, 16, 513–516

    Article  CAS  Google Scholar 

  202. Kim, D.-Y.; Wu, X.; Dordick, J. S., Generation of environmentally compatible polymer libraries via combinatorial biocatalysis, In Biocatalysis in Polymer Science; American Chemical Society: Washington, DC, 2003; Vol. 840; 34–49

    Google Scholar 

  203. Mirsky, V. M.; Kulikov, V., Combinatorial electropolymerization: Concept, equipment and applications, In High Throughput Analysis: A Tool for Combinatorial Materials Science; Potyrailo, R.A., Amis, E. J., Eds.; Kluwer/Plenum: New York, NY, 2003; ch 20, pp. 431–446

    Google Scholar 

  204. Kulikov, V.; Mirsky, V. M., Equipment for combinatorial electrochemical polymerization and high-throughput investigation of electrical properties of the synthesized polymers, Meas. Sci. Technol. 2004, 15, 49–54

    Article  CAS  Google Scholar 

  205. Mirsky, V. M.; Kulikov, V.; Hao, Q.; Wolfbeis, O. S., Multiparameter high throughput characterization of combinatorial chemical microarrays of chemosensitive polymers, Macromol. Rapid Commun. 2004, 25, 253–258

    Article  CAS  Google Scholar 

  206. Kulikov, V.; Mirsky, V. M.; Delaney, T. L.; Donoval, D.; Koch, A. W.; Wolfbeis, O. S., High-throughput analysis of bulk and contact conductance of polymer layers on electrodes, Meas. Sci. Technol. 2005, 16, 95–99

    Article  CAS  Google Scholar 

  207. Xiang, Y.; LaVan, D., Parallel microfluidic synthesis of conductive biopolymers, Proc. 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications 2006, 1–5

    Google Scholar 

  208. Mirsky, V. M.; Hirsch, T.; Piletsky, S. A.; Wolfbeis, O. S., A spreader-bar approach to molecular architecture: Formation of stable artificial chemoreceptors, Angew. Chem. Int. Ed. 1999, 38, 1108–1110

    Article  CAS  Google Scholar 

  209. Lahav, M.; Katz, E.; Willner, I., Photochemical imprint of molecular recognition sites in two-dimensional monolayers assembled on au electrodes: Effects of the monolayer structures on the binding affinities and association kinetics to the imprinted interfaces, Langmuir 2001, 17, 7387–7395

    Article  CAS  Google Scholar 

  210. Prodromidis, M. I.; Hirsch, T.; Mirsky, V. M.; Wolfbeis, O. S., Enantioselective artificial receptors formed by the spreader-bar technique, Electroanalysis 2003, 15, 1795–1798

    Article  CAS  Google Scholar 

  211. Tappura, K.; IVikholm-Lundin, I.; Albers, W. M., Lipoate-based imprinted self-assembled molecular thin films for biosensor applications, Biosens. Bioelectron. 2007, 22, 912–919

    Article  CAS  Google Scholar 

  212. Cho, E. J.; Tao, Z.; Tehan, E. C.; Bright, F. V., Multianalyte pin-printed biosensor arrays based on protein-doped xerogels, Anal. Chem. 2002, 74, 6177–6184

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radislav A. Potyrailo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Potyrailo, R.A., Mirsky, V.M. (2009). Introduction to Combinatorial Methods for Chemical and Biological Sensors. In: Potyrailo, R.A., Mirsky, V.M. (eds) Combinatorial Methods for Chemical and Biological Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73713-3_1

Download citation

Publish with us

Policies and ethics