Introduction to Combinatorial Methods for Chemical and Biological Sensors

Part of the Integrated Analytical Systems book series (ANASYS)


Sensing materials play a critical role in advancing selectivity, response speed, and sensitivity of chemical and biological determinations in gases and liquids. The desirable capabilities of sensing materials originate from their numerous functional parameters, which can be tailored to meet specific sensing needs. By increasing the structural and functional complexity of sensing materials, the ability to rationally define the precise requirements that will result in desired materials properties becomes increasingly limited. Combinatorial experimentation methodologies impact all areas of sensing materials research including inorganic, organic, and biological sensing materials.


Parallel Synthesis Computer Data Processing Potential Environmental Health Parameter Evaluation Process Beta Trial 


  1. 1.
    Janata, J. Principles of Chemical Sensors; Plenum: New York, N Y, 1989Google Scholar
  2. 2.
    Fiber Optic Chemical Sensors and Biosensors; Wolfbeis, O. S., Ed.; CRC: Boca Raton, FL, 1991Google Scholar
  3. 3.
    Bakker, E.; Bühlmann, P.; Pretsch, E., Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics, Chem. Rev. 1997, 97, 3083–3132CrossRefGoogle Scholar
  4. 4.
    Potyrailo, R. A.; Hobbs, S. E.; Hieftje, G. M., Optical waveguide sensors in analytical chemistry: Today’s instrumentation, applications and future development trends, Fresenius’ J. Anal. Chem. 1998, 362, 349–373CrossRefGoogle Scholar
  5. 5.
    Janata, J.; Josowicz, M.; Vanysek, P.; DeVaney, D. M., Chemical sensors, Anal. Chem. 1998, 70, 179R–208RCrossRefGoogle Scholar
  6. 6.
    Wolfbeis, O. S., Fiber-optic chemical sensors and biosensors, Anal. Chem. 2006, 78, 3859–3874CrossRefGoogle Scholar
  7. 7.
    Franke, M. E.; Koplin, T. J.; Simon, U., Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter?, Small 2006, 2, 36–50CrossRefGoogle Scholar
  8. 8.
    Potyrailo, R. A., Polymeric sensor materials: Toward an alliance of combinatorial and rational design tools?, Angew. Chem. Int. Ed. 2006, 45, 702–723CrossRefGoogle Scholar
  9. 9.
    Bergman, I., Rapid-response atmospheric oxygen monitor based on fluorescence quenching, Nature 1968, 218, 396CrossRefGoogle Scholar
  10. 10.
    Hardy, E. E.; David, D. J.; Kapany, N. S.; Unterleitner, F. C., Coated optical guides for spectrophotometry of chemical reactions, Nature 1975, 257, 666–667CrossRefGoogle Scholar
  11. 11.
    Hirschfeld, T.; Callis, J. B.; Kowalski, B. R., Chemical sensing in process analysis, Science 1984, 226, 312–318CrossRefGoogle Scholar
  12. 12.
    Peterson, J. I.; Vurek, G. G., Fiber-optic sensors for biomedical applications, Science 1984, 224, 123–127CrossRefGoogle Scholar
  13. 13.
    Barnard, S. M.; Walt, D. R., A fibre-optic chemical sensor with discrete sensing sites, Nature 1991, 353, 338–340CrossRefGoogle Scholar
  14. 14.
    Tan, W.; Shi, Z.-Y.; Smith, S.; Birnbaum, D.; Kopelman, R., Submicrometer intracellular chemical optical fiber sensors, Science 1992, 258, 778–781CrossRefGoogle Scholar
  15. 15.
    Charych, D. H.; Nagy, J. O.; Spevak, W.; Bednarski, M. D., Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly, Science 1993, 261, 585–588CrossRefGoogle Scholar
  16. 16.
    Dickinson, T. A.; White, J.; Kauer, J. S.; Walt, D. R., A chemical-detecting system based on a cross-reactive optical sensor array, Nature 1996, 382, 697–700CrossRefGoogle Scholar
  17. 17.
    Holtz, J. H.; Asher, S. A., Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials, Nature 1997, 389, 829–832CrossRefGoogle Scholar
  18. 18.
    Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science 1997, 277, 1078–1081CrossRefGoogle Scholar
  19. 19.
    Lin, V. S.-Y.; Motesharei, K.; Dancil, K.-P. S.; Sailor, M. J.; Ghadiri, M. R., A porous silicon-based optical interferometric biosensor, Science 1997, 278, 840–843CrossRefGoogle Scholar
  20. 20.
    Rakow, N. A.; Suslick, K. S., A colorimetric sensor array for odour visualization, Nature 2000, 406, 710–713CrossRefGoogle Scholar
  21. 21.
    Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H., Nanotube molecular wires as chemical sensors, Science 2000, 287, 622–625CrossRefGoogle Scholar
  22. 22.
    Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H., Smart single-chip gas sensor microsystem, Nature 2001, 414, 293–296CrossRefGoogle Scholar
  23. 23.
    Ivanisevic, A.; Yeh, J.-Y.; Mawst, L.; Kuech, T. F.; Ellis, A. B., Light-emitting diodes as chemical sensors, Nature 2001, 409, 476–476CrossRefGoogle Scholar
  24. 24.
    Janata, J.; Josowicz, M., Conducting polymers in electronic chemical sensors, Nature Mater. 2002, 2, 19–24CrossRefGoogle Scholar
  25. 25.
    Li, Y. Y.; Cunin, F.; Link, J. R.; Gao, T.; Betts, R. E.; Reiver, S. H.; Chin, V.; Bhatia, S. N.; Sailor, M. J., Polymer replicas of photonic porous silicon for sensing and drug delivery applications, Science 2003, 299, 2045–2047CrossRefGoogle Scholar
  26. 26.
    Alivisatos, A. P., The use of nanocrystals in biological detection, Nature Biotechnol. 2004, 22, 47–52CrossRefGoogle Scholar
  27. 27.
    Rose, A.; Zhu, Z.; Madigan, C. F.; Swager, T. M.; Bulovic, V., Sensitivity gains in chemosensing by lasing action in organic polymers, Nature 2005, 434, 876–879CrossRefGoogle Scholar
  28. 28.
    Potyrailo, R. A.; Ghiradella, H.; Vertiatchikh, A.; Dovidenko, K.; Cournoyer, J. R.; Olson, E., Morpho butterfly wing scales demonstrate highly selective vapour response, Nature Photonics 2007, 1, 123–128CrossRefGoogle Scholar
  29. 29.
    Armani, A. M.; Kulkarni, R. P.; Fraser, S. E.; Flagan, R. C.; Vahala, K. J., Label-free, single-molecule detection with optical microcavities, Science 2007, 317, 783–787CrossRefGoogle Scholar
  30. 30.
    Njagi, J.; Warner, J.; Andreescu, S., A bioanalytical chemistry experiment for undergraduate students: Biosensors based on metal nanoparticles, J Chem. Educ. 2007, 84, 1180–1182CrossRefGoogle Scholar
  31. 31.
    Shtoyko, T.; Zudans, I.; Seliskar, C. J.; Heineman, W. R.; Richardson, J. N., An attenuated total reflectance sensor for copper: An experiment for analytical or physical chemistry, J. Chem. Educ. 2004, 81, 1617–1619CrossRefGoogle Scholar
  32. 32.
    Honeybourne, C. L., Organic vapor sensors for food quality assessment, J. Chem. Educ. 2000, 77, 338–344CrossRefGoogle Scholar
  33. 33.
    Newnham, R. E., Structure-property relationships in sensors, Cryst. Rev. 1988, 1, 253–280CrossRefGoogle Scholar
  34. 34.
    Akporiaye, D. E., Towards a rational synthesis of large-pore zeolite-type materials?, Angew. Chem. Int. Ed. 1998, 37, 2456–2457CrossRefGoogle Scholar
  35. 35.
    Ulmer II, C. W.; Smith, D. A.; Sumpter, B. G.; Noid, D. I., Computational neural networks and the rational design of polymeric materials: The next generation polycarbonates, Comput. Theor. Polym. Sci. 1998, 8, 311–321CrossRefGoogle Scholar
  36. 36.
    Suman, M.; Freddi, M.; Massera, C.; Ugozzoli, F.; Dalcanale, E., Rational design of cavitand receptors for mass sensors, J.Am. Chem. Soc. 2003, 125, 12068–12069CrossRefGoogle Scholar
  37. 37.
    Lavigne, J. J.; Anslyn, E. V., Sensing a paradigm shift in the field of molecular recognition: From selective to differential receptors, Angew. Chem. Int. Ed. 2001, 40, 3119–3130CrossRefGoogle Scholar
  38. 38.
    Hatchett, D. W.; Josowicz, M., Composites of intrinsically conducting polymers as sensing nanomaterials, Chem. Rev. 2008, 108, 746–769CrossRefGoogle Scholar
  39. 39.
    Schatz, G. C., Using theory and computation to model nanoscale properties, Proc. Natl. Acad. Sci. USA 2007, 104, 6885–6892CrossRefGoogle Scholar
  40. 40.
    Peng, S.; Cho, K., Ab initio study of doped carbon nanotube sensors, Nano Lett. 2003, 3, 513–517CrossRefGoogle Scholar
  41. 41.
    Dmitriev, S.; Lilach, Y.; Button, B.; Moskovits, M.; Kolmakov, A., Nanoengineered chemiresistors: The interplay between electron transport and chemisorption properties of morphologically encoded sno2 nanowires, Nanotechnology 2007, 18, 055707CrossRefGoogle Scholar
  42. 42.
    Mirsky, V. M.; Vasjari, M.; Novotny, I.; Rehacek, V.; Tvarozek, V.; Wolfbeis, O. S., Self-assembled monolayers as selective filters for chemical sensors, Nanotechnology 2002, 13, 1–4CrossRefGoogle Scholar
  43. 43.
    Strohmeier, G. A.; Fabian, W. M. F.; Uray, G., A combined experimental and theoretical approach toward the development of optimized luminescent carbostyrils, Helvetica Chim. Acta 2004, 87, 215–226CrossRefGoogle Scholar
  44. 44.
    Abraham, M. H., Scales of solute hydrogen bonding: Their construction and application to physicochemical and biochemical processes, Chem. Soc. Rev. 1993, 22, 73–83CrossRefGoogle Scholar
  45. 45.
    Salvador, J. P.; Estevez, M. C.; Marco, M. P.; Sanchez-Baeza, F., A new methodology for the rational design of molecularly imprinted polymers, Anal. Lett. 2007, 40, 1294–1306.CrossRefGoogle Scholar
  46. 46.
    Hao, Q.; Wang, X.; Lu, L.; Yang, X.; Mirsky, V. M., Electropolymerized multilayer conducting polymers with response to gaseous hydrogen chloride, Macromol. Rapid Comm. 2005, 26, 1099–1103CrossRefGoogle Scholar
  47. 47.
    Badjic, J. D.; Kostic, N. M., Behavior of organic compounds confined in monoliths of sol-gel silica glass. Effects of guest-host hydrogen bonding on uptake, release, and isomerization of the guest compounds, J. Mater. Chem. 2001, 11, 408–418CrossRefGoogle Scholar
  48. 48.
    Cao, L.; Lin, H.; Mirsky, V. M., DNA-based surface plasmon resonance biosensor for enrofloxacin, Anal. Chim. Acta 2007, 589, 1–5CrossRefGoogle Scholar
  49. 49.
    Potyrailo, R. A.; Conrad, R. C.; Ellington, A. D.; Hieftje, G. M., Adapting selected nucleic acid ligands (aptamers) to biosensors, Anal. Chem. 1998, 70, 3419–3425CrossRefGoogle Scholar
  50. 50.
    Kaneko, H.; Minagawa, H.; Shimada, J., Rational design of thermostable lactate oxidase by analyzing quaternary structure and prevention of deamidation, Biotechn. Lett. 2005, 27, 1777–1784CrossRefGoogle Scholar
  51. 51.
    Schultz, P. G., Commentary on combinatorial chemistry, Appl. Catal., A 2003, 254, 3–4CrossRefGoogle Scholar
  52. 52.
    McKusick, B. C.; Heckert, R. E.; Cairns, T. L.; Coffman, D. D.; Mower, H. F., Cyanocarbon chemistry. VI. Tricyanovinylamines, J. Am. Chem. Soc. 1958, 80, 2806–2815CrossRefGoogle Scholar
  53. 53.
    Bühlmann, P.; Pretsch, E.; Bakker, E., Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors, Chem. Rev. 1998, 98, 1593–1687CrossRefGoogle Scholar
  54. 54.
    Steinle, E. D.; Amemiya, S.; Bühlmann, P.; Meyerhoff, M. E., Origin of non-nernstian anion response slopes of metalloporphyrin-based liquid/polymer membrane electrodes, Anal. Chem. 2000, 72, 5766–5773CrossRefGoogle Scholar
  55. 55.
    Pedersen, C. J., Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc. 1967, 89, 7017–7036CrossRefGoogle Scholar
  56. 56.
    Hu, Y.; Tan, O. K.; Pan, J. S.; Yao, X., A new form of nanosized srtio3 material for near-human-body temperature oxygen sensing applications, J. Phys. Chem. B 2004, 108, 11214–11218CrossRefGoogle Scholar
  57. 57.
    Svetlicic, V.; Schmidt, A. J.; Miller, L. L., Conductometric sensors based on the hypersensitive response of plasticized polyaniline films to organic vapors, Chem. Mater. 1998, 10, 3305–3307CrossRefGoogle Scholar
  58. 58.
    Martin, P. D.; Wilson, T. D.; Wilson, I. D.; Jones, G. R., An unexpected selectivity of a propranolol-derived molecular imprint for tamoxifen, Analyst 2001, 126, 757–759CrossRefGoogle Scholar
  59. 59.
    Potyrailo, R. A.; Sivavec, T. M., Boosting sensitivity of organic vapor detection with silicone block polyimide polymers, Anal. Chem. 2004, 76, 7023–7027CrossRefGoogle Scholar
  60. 60.
    Walt, D. R.; Dickinson, T.; White, J.; Kauer, J.; Johnson, S.; Engelhardt, H.; Sutter, J.; Jurs, P., Optical sensor arrays for odor recognition, Biosens. Bioelectron. 1998, 13, 697–699CrossRefGoogle Scholar
  61. 61.
    Eberhart, M. E.; Clougherty, D. P., Looking for design in materials design, Nature Mater. 2004, 3, 659–661CrossRefGoogle Scholar
  62. 62.
    A Practical Guide to Combinatorial Chemistry; Czarnik, A. W.; DeWitt, S. H., Eds.; American Chemical Society: Washington, DC, 1997Google Scholar
  63. 63.
    Frank, R.; Heikens, W.; Heisterberg-Moutsis, G.; Blocker, H., A new general approach for the simultaneous chemical synthesis of large numbers of oligonucleotides: Segmental solid supports, Nucl. Acid. Res. 1983, 11, 4365–4377CrossRefGoogle Scholar
  64. 64.
    Geysen, H. M.; Meloen, R. H.; Barteling, S. J., Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid, Proc. Natl Acad. Sci. USA 1984, 81, 3998–4002CrossRefGoogle Scholar
  65. 65.
    Houghten, R. A., General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids, Proc. Natl. Acad. Sci. USA 1985, 82, 5131–5135CrossRefGoogle Scholar
  66. 66.
    Lebl, M., Parallel personal comments on “classical” papers in combinatorial chemistry, J. Comb. Chem. 1999, 1, 3–24CrossRefGoogle Scholar
  67. 67.
    Jandeleit, B.; Schaefer, D. J.; Powers, T. S.; Turner, H. W.; Weinberg, W. H., Combinatorial materials science and catalysis, Angew. Chem. Int. Ed. 1999, 38, 2494–2532CrossRefGoogle Scholar
  68. 68.
    Maier, W.; Kirsten, G.; Orschel, M.; Weiß, P.-A.; Holzwarth, A.; Klein, J., Combinatorial chemistry of materials, polymers, and catalysts, In Combinatorial Approaches to Materials Development; Malhotra, R., Ed.; American Chemical Society: Washington, DC, 2002; Vol. 814; 1–21CrossRefGoogle Scholar
  69. 69.
    Combinatorial and Artificial Intelligence Methods in Materials Science; Takeuchi, I.; Newsam, J. M.; Wille, L. T.; Koinuma, H.; Amis, E. J., Eds.; Materials Research Society: Warrendale, PA, 2002; Vol. 700Google Scholar
  70. 70.
    Combinatorial Materials Synthesis; Xiang, X.-D.; Takeuchi, I., Eds.; Marcel Dekker: New York, NY, 2003Google Scholar
  71. 71.
    High Throughput Analysis: A Tool for Combinatorial Materials Science; Potyrailo, R. A.; Amis, E. J., Ed.; Kluwer/Plenum: New York, NY, 2003Google Scholar
  72. 72.
    Koinuma, H.; Takeuchi, I., Combinatorial solid state chemistry of inorganic materials, Nat. Mater. 2004, 3, 429–438CrossRefGoogle Scholar
  73. 73.
    Combinatorial and Artificial Intelligence Methods in Materials Science II; Potyrailo, R. A.; Karim, A.; Wang, Q.; Chikyow, T., Eds.; Materials Research Society: Warrendale, PA, 2004; Vol. 804Google Scholar
  74. 74.
    Special Feature on Combinatorial and High-Throughput Materials Research; Potyrailo, R. A.; Takeuchi, I., Ed.; Meas. Sci. Technol.: 2005; Vol. 16, 316Google Scholar
  75. 75.
    Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials; Potyrailo, R. A.; Maier, W. F., Eds.; CRC: Boca Raton, FL, 2006Google Scholar
  76. 76.
    Birina, G. A.; Boitsov, K. A., Experimental use of combinational and factorial plans for optimizing the compositions of electronic materials, Zavodskaya Laboratoriya (in Russian) 1974, 40, 855–857Google Scholar
  77. 77.
    Kennedy, K.; Stefansky, T.; Davy, G.; Zackay, V. F.; Parker, E. R., Rapid method for determining ternary-alloy phase diagrams, J. Appl. Phys. 1965, 36, 3808–3810CrossRefGoogle Scholar
  78. 78.
    Hoffmann, R., Not a library, Angew. Chem. Int. Ed. 2001, 40, 3337–3340CrossRefGoogle Scholar
  79. 79.
    Hoogenboom, R.; Meier, M. A. R.; Schubert, U. S., Combinatorial methods, automated synthesis and high-throughput screening in polymer research: Past and present, Macromol. Rapid Commun. 2003, 24, 15–32CrossRefGoogle Scholar
  80. 80.
    Anderson, F. W.; Moser, J. H., Automatic computer program for reduction of routine emission spectrographic data, Anal. Chem. 1958, 30, 879–881CrossRefGoogle Scholar
  81. 81.
    Eash, M. A.; Gohlke, R. S., Mass spectrometric analysis. A small computer program for the analysis of mass spectra, Anal. Chem. 1962, 34, 713–713CrossRefGoogle Scholar
  82. 82.
    Hanak, J. J., The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems, J. Mater. Sci. 1970, 5, 964–971CrossRefGoogle Scholar
  83. 83.
    Xiang, X.-D.; Sun, X.; Briceño, G.; Lou, Y.; Wang, K.-A.; Chang, H.; Wallace-Freedman, W. G.; Chen, S.-W.; Schultz, P. G., A combinatorial approach to materials discovery, Science 1995, 268, 1738–1740CrossRefGoogle Scholar
  84. 84.
    Chang, H.; Gao, C.; Takeuchi, I.; Yoo, Y.; Wang, J.; Schultz, P. G.; Xiang, X.-D.; Sharma, R. P.; Downes, M.; Venkatesan, T., Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin-film libraries for microwave applications, Appl. Phys. Lett. 1998, 72, 2185–2187CrossRefGoogle Scholar
  85. 85.
    Briceño, G.; Chang, H.; Sun, X.; Schultz, P. G.; Xiang, X.-D., A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis, Science 1995, 270, 273–275CrossRefGoogle Scholar
  86. 86.
    Danielson, E.; Devenney, M.; Giaquinta, D. M.; Golden, J. H.; Haushalter, R. C.; McFarland, E. W.; Poojary, D. M.; Reaves, C. M.; Weinberg, W. H.; Wu, X. D., A rare-earth phosphor containing one-dimensional chains identified through combinatorial methods, Science 1998, 279, 837–839CrossRefGoogle Scholar
  87. 87.
    Wong, D. W.; Robertson, G. H., Combinatorial chemistry and its applications in agriculture and food, Adv. Exp. Med. Biol. 1999, 464, 91–105Google Scholar
  88. 88.
    Zhao, J.-C., A combinatorial approach for structural materials, Adv. Eng. Mat. 2001, 3, 143–147CrossRefGoogle Scholar
  89. 89.
    Olk, C. H., Combinatorial approach to material synthesis and screening of hydrogen storage alloys, Meas. Sci. Technol. 2005, 16, 14–20CrossRefGoogle Scholar
  90. 90.
    Zou, L.; Savvate’ev, V.; Booher, J.; Kim, C.-H.; Shinar, J., Combinatorial fabrication and studies of intense efficient ultraviolet-violet organic light-emitting device arrays, Appl. Phys. Lett. 2001, 79, 2282–2284CrossRefGoogle Scholar
  91. 91.
    Takeuchi, I.; Famodu, O. O.; Read, J. C.; Aronova, M. A.; Chang, K.-S.; Craciunescu, C.; Lofland, S. E.; Wuttig, M.; Wellstood, F. C.; Knauss, L.; Orozco, A., Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads, Nat. Mater. 2003, 2, 180–184CrossRefGoogle Scholar
  92. 92.
    Cui, J.; Chu, Y. S.; Famodu, O. O.; Furuya, Y.; Hattrick-Simpers, J.; James, R. D.; Ludwig, A.; Thienhaus, S.; Wuttig, M.; Zhang, Z.; Takeuchi, I., Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater. 2006, 5, 286–290CrossRefGoogle Scholar
  93. 93.
    Holzwarth, A.; Schmidt, H.-W.; Maier, W., Detection of catalytic activity in combinatorial libraries of heterogeneous catalysts by IR thermography, Angew. Chem. Int. Ed. 1998, 37, 2644–2647CrossRefGoogle Scholar
  94. 94.
    Cooper, A. C.; McAlexander, L. H.; Lee, D.-H.; Torres, M. T.; Crabtree, R. H., Reactive dyes as a method for rapid screening of homogeneous catalysts, J. Am. Chem. Soc. 1998, 120, 9971–9972CrossRefGoogle Scholar
  95. 95.
    Lemmon, J. P.; Wroczynski, R. J.; Whisenhunt Jr., D. W.; Flanagan, W. P., High throughput strategies for monomer and polymer synthesis and characterization, Polym. Prepr. 2001, 42, 630–631Google Scholar
  96. 96.
    Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E., Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts, Science 1998, 280, 1735–1737CrossRefGoogle Scholar
  97. 97.
    Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater. 2006, 5, 909–913CrossRefGoogle Scholar
  98. 98.
    Brocchini, S.; James, K.; Tangpasuthadol, V.; Kohn, J., A combinatorial approach for polymer design, J. Am. Chem. Soc. 1997, 119, 4553–4554CrossRefGoogle Scholar
  99. 99.
    Lai, R.; Kang, B. S.; Gavalas, G. R., Parallel synthesis of ZSM-5 zeolite films from clear organic-free solutions, Angew. Chem., Int. Ed. 2001, 40, 408–411CrossRefGoogle Scholar
  100. 100.
    Ramirez, A. G.; Saha, R., Combinatorial studies for determining properties of thin-film gold-cobalt alloys, Appl. Phys. Lett. 2004, 85, 5215–5217CrossRefGoogle Scholar
  101. 101.
    Jiang, R.; Rong, C.; Chu, D., Combinatorial approach toward high-throughput analysis of direct methanol fuel cells, J. Comb. Chem. 2005, 7, 272–278CrossRefGoogle Scholar
  102. 102.
    Lemmon, J. P.; Manivannan, V.; Jordan, T.; Hassib, L.; Siclovan, O.; Othon, M.; Pilliod, M., High throughput screening of materials for solid oxide fuel cells, In Combinatorial and Artificial Intelligence Methods in Materials Science II. MRS Symposium Proceedings; Potyrailo, R. A.; Karim, A.; Wang Q.; Chikyow, T., Eds.; Materials Research Society: Warrendale, PA, 2004; Vol. 804; 27–32Google Scholar
  103. 103.
    Hänsel, H.; Zettl, H.; Krausch, G.; Schmitz, C.; Kisselev, R.; Thelakkat, M.; Schmidt, H.-W., Combinatorial study of the long-term stability of organic thin-film solar cells, Appl. Phys. Lett. 2002, 81, 2106–2108CrossRefGoogle Scholar
  104. 104.
    Chisholm, B. J.; Potyrailo, R. A.; Cawse, J. N.; Shaffer, R. E.; Brennan, M. J.; Moison, C.; Whisenhunt, D. W.; Flanagan, W. P.; Olson, D. R.; Akhave, J. R.; Saunders, D. L.; Mehrabi, A.; Licon, M., The development of combinatorial chemistry methods for coating development I. Overview of the experimental factory, Prog. Org. Coat. 2002, 45, 313–321CrossRefGoogle Scholar
  105. 105.
    Wicks, D. A.; Bach, H., The coming revolution for coatings science: High throughput screening for formulations, Proceedings of The 29th Int. Waterborne, High-Solids, and Powder Coat. Symp. 2002, 29, 1–24Google Scholar
  106. 106.
    Grunlan, J. C.; Mehrabi, A. R.; Chavira, A. T.; Nugent, A. B.; Saunders, D. L., Method for combinatorial screening of moisture vapor transmission rate, J. Comb. Chem. 2003, 5, 362–368CrossRefGoogle Scholar
  107. 107.
    Stafslien, S. J.; Bahr, J. A.; Feser, J. M.; Weisz, J. C.; Chisholm, B. J.; Ready, T. E.; Boudjouk, P., Combinatorial materials research applied to the development of new surface coatings I: A multiwell plate screening method for the high-throughput assessment of bacterial biofilm retention on surfaces, J. Comb. Chem. 2006, 8, 156–162CrossRefGoogle Scholar
  108. 108.
    Ekin, A.; Webster, D. C., Combinatorial and high-throughput screening of the effect of siloxane composition on the surface properties of crosslinked siloxane-polyurethane coatings, J. Comb. Chem. 2007, 9, 178–188CrossRefGoogle Scholar
  109. 109.
    Potyrailo, R. A.; Chisholm, B. J.; Olson, D. R.; Brennan, M. J.; Molaison, C. A., Development of combinatorial chemistry methods for coatings: High-throughput screening of abrasion resistance of coatings libraries, Anal. Chem. 2002, 74, 5105–5111CrossRefGoogle Scholar
  110. 110.
    Potyrailo, R. A.; Chisholm, B. J.; Morris, W. G.; Cawse, J. N.; Flanagan, W. P.; Hassib, L.; Molaison, C. A.; Ezbiansky, K.; Medford, G.; Reitz, H., Development of combinatorial chemistry methods for coatings: High-throughput adhesion evaluation and scale-up of combinatorial leads, J. Comb. Chem. 2003, 5, 472–478CrossRefGoogle Scholar
  111. 111.
    MacLean, D.; Baldwin, J. J.; Ivanov, V. T.; Kato, Y.; Shaw, A.; Schneider, P.; Gordon, E. M., Glossary of terms used in combinatorial chemistry, J. Comb. Chem. 2000, 2, 562–578CrossRefGoogle Scholar
  112. 112.
    Potyrailo, R. A.; Takeuchi, I., Role of high-throughput characterization tools in combinatorial materials science, Meas. Sci. Technol. 2005, 16, 1–4CrossRefGoogle Scholar
  113. 113.
    Cohan, P. E., Combinatorial materials science applied – mini case studies, lessons and strategies, In Combi 2002 – the 4th Annual International Symposium on Combinatorial Approaches for New Materials Discovery; Knowledge Foundation: Arlington, VA, 2002Google Scholar
  114. 114.
    Siemons, M.; Koplin, T. J.; Simon, U., Advances in high throughput screening of gas sensing materials, Appl. Surf. Sci. 2007, Appl. Surf. Sci. 2007, 254, 669–676CrossRefGoogle Scholar
  115. 115.
    Qin, L.; Zou, S.; Xue, C.; Atkinson, A.; Schatz, G. C.; Mirkin, C. A., Designing, fabricating, and imaging raman hot spots, Proc. Natl. Acad. Sci. USA 2006, 103, 13300–13303CrossRefGoogle Scholar
  116. 116.
    Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A.; Ong, K. G., Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes, Nanotechnology 2006, 17, 398–402CrossRefGoogle Scholar
  117. 117.
    Lu, Y.; Liu, J.; Li, J.; Bruesehoff, P. J.; Pavot, C. M.-B.; Brown, A. K., New highly sensitivie and selective catalytic DNA biosensors for metal ions, Biosens. Bioelectron. 2003, 18, 529–540CrossRefGoogle Scholar
  118. 118.
    Hirsch, T.; Kettenberger, H.; Wolfbeis, O. S.; Mirsky, V. M., A simple strategy for preparation of sensor arrays: Molecularly structured monolayers as recognition elements, Chem. Commun. 2003, 432–433Google Scholar
  119. 119.
    Hermann, T.; Patel, D. J., Adaptive recognition by nucleic acid aptamers, Science 2000, 287, 820–825CrossRefGoogle Scholar
  120. 120.
    Cho, E. J.; Tao, Z.; Tang, Y.; Tehan, E. C.; Bright, F. V.; Hicks, W. L., Jr.; Gardella, J. A., Jr.; Hard, R., Tools to rapidly produce and screen biodegradable polymer and sol-gel-derived xerogel formulations, Appl. Spectrosc. 2002, 56, 1385–1389CrossRefGoogle Scholar
  121. 121.
    Mirsky, V. M.; Riepl, M.; Wolfbeis, O. S., Capacitive monitoring of protein immobilization and antigen-antibody reaction on the mono-molecular films of alkylthiols adsorbed on gold electrodes, Biosens. Bioelectron. 1997, 12, 977–989CrossRefGoogle Scholar
  122. 122.
    Rege, K.; Raravikar, N. R.; Kim, D.-Y.; Schadler, L. S.; Ajayan, P. M.; Dordick, J. S., Enzyme-polymer-single walled carbon nanotube composites as biocatalytic films, Nano Lett. 2003, 3, 829–832CrossRefGoogle Scholar
  123. 123.
    Kramer, K.; Hock, B., Antibodies for biosensors, In Ultrathin Electrochemical Chemo- and Biosensors; Mirsky, V. M., Ed.; Springer: Berlin, Germany, 2004Google Scholar
  124. 124.
    Matzger, A. J.; Lawrence, C. E.; Grubbs, R. H.; Lewis, N. S., Combinatorial approaches to the synthesis of vapor detector arrays for use in an electronic nose, J. Comb. Chem. 2000, 2, 301–304CrossRefGoogle Scholar
  125. 125.
    Apostolidis, A.; Klimant, I.; Andrzejewski, D.; Wolfbeis, O. S., A combinatorial approach for development of materials for optical sensing of gases, J. Comb. Chem. 2004, 6, 325–331CrossRefGoogle Scholar
  126. 126.
    Deans, R.; Kim, J.; Machacek, M. R.; Swager, T. M., A poly(p-phenyleneethynylene) with a highly emissive aggregated phase, J. Am. Chem. Soc. 2000, 122, 8565–8566CrossRefGoogle Scholar
  127. 127.
    Lavastre, O.; Illitchev, I.; Jegou, G.; Dixneuf, P. H., Discovery of new fluorescent materials from fast synthesis and screening of conjugated polymers, J. Am. Chem. Soc. 2002, 124, 5278–5279CrossRefGoogle Scholar
  128. 128.
    Zhou, Y.; Freitag, M.; Hone, J.; Staii, C.; Johnson, A. T.; Pinto, N. J.; MacDiarmid, A. G., Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm, Appl. Phys. Lett. 2003, 83, 3800–3802CrossRefGoogle Scholar
  129. 129.
    Bever, M. B.; Duwez, P. E., Gradients in composite materials, Mater. Sci. Eng. 1972, 10, 1–8CrossRefGoogle Scholar
  130. 130.
    Shen, M.; Bever, M. B., Gradients in polymeric materials, J. Mater. Sci. 1972, 7, 741–746CrossRefGoogle Scholar
  131. 131.
    Pompe, W.; Worch, H.; Epple, M.; Friess, W.; Gelinsky, M.; Greil, P.; Hempel, U.; Scharnweber, D.; Schulte, K., Functionally graded materials for biomedical applications, Mater. Sci. Eng. A 2003, 362, 40–60CrossRefGoogle Scholar
  132. 132.
    Taylor, C. J.; Semancik, S., Use of microhotplate arrays as microdeposition substrates for materials exploration, Chem. Mater. 2002, 14, 1671–1677CrossRefGoogle Scholar
  133. 133.
    Aronova, M. A.; Chang, K. S.; Takeuchi, I.; Jabs, H.; Westerheim, D.; Gonzalez-Martin, A.; Kim, J.; Lewis, B., Combinatorial libraries of semiconductor gas sensors as inorganic electronic noses, Appl. Phys. Lett. 2003, 83, 1255–1257CrossRefGoogle Scholar
  134. 134.
    Potyrailo, R. A., Sensors in combinatorial polymer research, Macromol. Rapid Comm. 2004, 25, 77–94CrossRefGoogle Scholar
  135. 135.
    Amis, E. J., Combinatorial materials science reaching beyond discovery, Nat. Mater. 2004, 3, 83–85CrossRefGoogle Scholar
  136. 136.
    Scheidtmann, J.; Frantzen, A.; Frenzer, G.; Maier, W. F., A combinatorial technique for the search of solid state gas sensor materials, Meas. Sci. Technol. 2005, 16, 119–127CrossRefGoogle Scholar
  137. 137.
    Potyrailo, R. A.; Morris, W. G.; Leach, A. M.; Hassib, L.; Krishnan, K.; Surman, C.; Wroczynski, R.; Boyette, S.; Xiao, C.; Shrikhande, P.; Agree, A.; Cecconie, T., Theory and practice of ubiquitous quantitative chemical analysis using conventional computer optical disk drives, Appl. Opt. 2007, 46, 7007–7017CrossRefGoogle Scholar
  138. 138.
    Dickinson, T. A.; Walt, D. R.; White, J.; Kauer, J. S., Generating sensor diversity through combinatorial polymer synthesis, Anal. Chem. 1997, 69, 3413–3418CrossRefGoogle Scholar
  139. 139.
    Potyrailo, R. A.; Wroczynski, R. J., Spectroscopic and imaging approaches for evaluation of properties of one-dimensional arrays of formulated polymeric materials fabricated in a combinatorial microextruder system, Rev. Sci. Instrum. 2005, 76, 062222CrossRefGoogle Scholar
  140. 140.
    Sysoev, V. V.; Kiselev, I.; Frietsch, M.; Goschnick, J., Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor microarray, Sensors 2004, 4, 37–46CrossRefGoogle Scholar
  141. 141.
    Klingvall, R.; Lundström, I.; Löfdahl, M.; Eriksson, M., A combinatorial approach for field-effect gas sensor research and development, IEEE Sens. J. 2005, 5, 995–1003CrossRefGoogle Scholar
  142. 142.
    Baker, B. E.; Kline, N. J.; Treado, P. J.; Natan, M. J., Solution-based assembly of metal surfaces by combinatorial methods, J. Am. Chem. Soc. 1996, 118, 8721–8722CrossRefGoogle Scholar
  143. 143.
    Potyrailo, R. A.; Hassib, L., Analytical instrumentation infrastructure for combinatorial and high-throughput development of formulated discrete and gradient polymeric sensor materials arrays, Rev. Sci. Instrum. 2005, 76, 062225CrossRefGoogle Scholar
  144. 144.
    Handbook of Chemical and Biological Sensors; Taylor, R. F.; Schultz, J. S., Eds.; IOP Publishing: Bristol, UK, 1996Google Scholar
  145. 145.
    Carrano, J. C.; Jeys, T.; Cousins, D.; Eversole, J.; Gillespie, J.; Healy, D.; Licata, N.; Loerop, W.; O’Keefe, M.; Samuels, A.; Schultz, J.; Walter, M.; Wong, N.; Billotte, B.; Munley, M.; Reich, E.; Roos, J., Chemical and biological sensor standards study (CBS3), In Optically Based Biological and Chemical Sensing for Defence; Carrano, J. C.; Zukauskas, A. Eds.; SPIE – The International Society for Optical Engineering: Bellingham, WA, 2004; Vol. 5617; xi–xiiiGoogle Scholar
  146. 146.
    Meyerhoff, M. E., In vivo blood-gas and electrolyte sensors: Progress and challenges, Trends Anal. Chem. 1993, 12, 257–266CrossRefGoogle Scholar
  147. 147.
    Clark, K. J. R.; Furey, J., Suitability of selected single-use process monitoring and control technology, BioProcess Int. 2006, 4(6), S16–S20Google Scholar
  148. 148.
    Newman, J. D.; Turner, A. P. F., Home blood glucose biosensors: A commercial perspective, Biosens. Bioelectron. 2005, 20, 2435–2453CrossRefGoogle Scholar
  149. 149.
    Pickup, J. C.; Alcock, S., Clinicians’ requirements for chemical sensors for in vivo monitoring: A multinational survey, Biosens. Bioelectron. 1991, 6, 639–646CrossRefGoogle Scholar
  150. 150.
    Eriksson, M.; Klingvall, R.; Lundström, I., A combinatorial method for optimization of materials for gas sensitive field-effect devices, In Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials; Potyrailo, R. A.; Maier, W. F. Eds.; CRC: Boca Raton, FL, 2006; 85–95CrossRefGoogle Scholar
  151. 151.
    Lundström, I.; Sundgren, H.; Winquist, F.; Eriksson, M.; Krantz-Rülcker, C.; Lloyd-Spetz, A., Twenty-five years of field effect gas sensor research in Linköping, Sens. Actuators B 2007, 121, 247–262CrossRefGoogle Scholar
  152. 152.
    Goschnick, J.; Koronczi, I.; Frietsch, M.; Kiselev, I., Water pollution recognition with the electronic nose kamina, Sens. Actuators B 2005, 106, 182–186CrossRefGoogle Scholar
  153. 153.
    Mazza, T.; Barborini, E.; Kholmanov, I. N.; Piseri, P.; Bongiorno, G.; Vinati, S.; Milania, P.; Ducati, C.; Cattaneo, D.; Li Bassi, A.; Bottani, C. E.; Taurino, A. M.; Siciliano, P., Libraries of cluster-assembled titania films for chemical sensing, Appl. Phys. Lett. 2005, 87, 103–108CrossRefGoogle Scholar
  154. 154.
    Korotcenkov, G., Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches, Sens. Actuators B 2005, 107, 209–232CrossRefGoogle Scholar
  155. 155.
    Barsan, N.; Koziej, D.; Weimar, U., Metal oxide-based gas sensor research: How to? Sens. Actuators B 2007, 121, 18–35CrossRefGoogle Scholar
  156. 156.
    Semancik, S. Correlation of chemisorption and electronic effects for metal oxide interfaces: Transducing principles for temperature programmed gas microsensors. Final technical report project number: Emsp 65421, grant number: 07-98er62709; US Department of Energy Information Bridge: 2002, pp
  157. 157.
    Semancik, S., Temperature-dependent materials research with micromachined array platforms, In Combinatorial Materials Synthesis; Xiang, X.-D.; Takeuchi, I., Eds.; Marcel Dekker: New York, NY, 2003; 263–295Google Scholar
  158. 158.
    Simon, U.; Sanders, D.; Jockel, J.; Heppel, C.; Brinz, T., Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials, J. Comb. Chem. 2002, 4, 511–515CrossRefGoogle Scholar
  159. 159.
    Simon, U.; Sanders, D.; Jockel, J.; Brinz, T., Setup for high-throughput impedance screening of gas-sensing materials, J. Comb. Chem. 2005, 7, 682–687CrossRefGoogle Scholar
  160. 160.
    Frantzen, A.; Scheidtmann, J.; Frenzer, G.; Maier, W. F.; Jockel, J.; Brinz, T.; Sanders, D.; Simon, U., High-throughput method for the impedance spectroscopic characterization of resistive gas sensors, Angew. Chem. Int. Ed. 2004, 43, 752–754CrossRefGoogle Scholar
  161. 161.
    Sanders, D.; Simon, U., High-throughput gas sensing screening of surface-doped In2O3, J. Comb. Chem. 2007, 9, 53–61CrossRefGoogle Scholar
  162. 162.
    Siemons, M.; Simon, U., Preparation and gas sensing properties of nanocrystalline la-doped CoTiO3, Sens. Actuators B 2006, 120, 110–118CrossRefGoogle Scholar
  163. 163.
    Siemons, M.; Simon, U., Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method, Sens. Actuators B 2007, Sens. Actuators B 2007, 126, 595–603CrossRefGoogle Scholar
  164. 164.
    Siemons, M.; Simon, U., High throughput screening of the propylene and ethanol sensing properties of rare-earth orthoferrites and orthochromites, Sens. Actuators B 2007, 126, 181–186CrossRefGoogle Scholar
  165. 165.
    Nakagawa, M.; Okabayashi, T.; Fujimoto, T.; Utsunomiya, K.; Yamamoto, I.; Wada, T.; Yamashita, Y.; Yamashita, N., A new method for recognizing organic vapor by spectroscopic image on cataluminescence-based gas sensor, Sens. Actuators B 1998, 51, 159–162CrossRefGoogle Scholar
  166. 166.
    Nakagawa, M.; Yamashita, N., Cataluminescence-based gas sensors, Springer Ser. Chem. Sens. Biosens. 2005, 3, 93–132CrossRefGoogle Scholar
  167. 167.
    Kahl, M.; Voges, E.; Kostrewa, S.; Viets, C.; Hill, W., Periodically structured metallic substrates for SERS, Sens. Actuators B 1998, 51, 285–291CrossRefGoogle Scholar
  168. 168.
    Han, M. S.; Lytton-Jean, A. K. R.; Oh, B.-K.; Heo, J.; Mirkin, C. A., Colorimetric screening of DNA-binding molecules with gold nanoparticle probes, Angew. Chem. Int. Ed. 2006, 45, 1807–1810CrossRefGoogle Scholar
  169. 169.
    Dovidenko, K.; Potyrailo, R. A.; Grande, J., Focused ion beam microscope as an analytical tool for nanoscale characterization of gradient-formulated polymeric sensor materials, In Combinatorial Methods and Informatics in Materials Science. MRS Symposium Proceedings; Fasolka, M.; Wang, Q.; Potyrailo, R. A.; Chikyow, T.; Schubert, U. S.; Korkin, A., Eds.; Materials Research Society: Warrendale, PA, 2006; Vol. 894; 231–236Google Scholar
  170. 170.
    Bhat, R. R.; Genzer, J., Combinatorial study of nanoparticle dispersion in surface-grafted macromolecular gradients, Appl. Surf. Sci. 2005, 252, 2549–2554CrossRefGoogle Scholar
  171. 171.
    Bhat, R. R.; Tomlinson, M. R.; Wu, T.; Genzer, J., Surface-grafted polymer gradients: Formation, characterization and applications, Adv. Polym. Sci. 2006, 198, 51–124CrossRefGoogle Scholar
  172. 172.
    Bhat, R. R.; Genzer, J., Tuning the number density of nanoparticles by multivariant tailoring of attachment points on flat substrates, Nanotechnology 2007, 18, 025301CrossRefGoogle Scholar
  173. 173.
    Demers, L. M.; Mirkin, C. A., Combinatorial templates generated by dip-pen nanolithography for the formation of two-dimensional particle arrays, Angew. Chem. Int. Ed. 2001, 40, 3069–3071CrossRefGoogle Scholar
  174. 174.
    Ivanisevic, A.; McCumber, K. V.; Mirkin, C. A., Site-directed exchange studies with combinatorial libraries of nanostructures, J. Am. Chem. Soc. 2002, 124, 11997–12001CrossRefGoogle Scholar
  175. 175.
    Potyrailo, R. A.; Leach, A. M., Gas sensor materials based on semiconductor nanocrystal/ polymer composite films, In Proceedings of Transducers’05, the 13th International Conference on Solid-state Sensors, Actuators and Microsystems, Seoul, Korea, June 5–9, 2005; 1292–1295Google Scholar
  176. 176.
    Potyrailo, R. A.; Leach, A. M., Selective gas nanosensors with multisize cdse nanocrystal/polymer composite films and dynamic pattern recognition, Appl. Phys. Lett. 2006, 88, 134110CrossRefGoogle Scholar
  177. 177.
    Leach, A. M.; Potyrailo, R. A., Gas sensor materials based on semiconductor nanocrystal/polymer composite films, In Combinatorial Methods and Informatics in Materials Science. MRS Symposium Proceedings; Wang, Q.; Potyrailo, R. A.; Fasolka, M.; Chikyow, T.; Schubert, U. S.; Korkin, A., Eds.; Materials Research Society: Warrendale, PA, 2006; Vol. 894; 237–243Google Scholar
  178. 178.
    Singh, A.; Yao, Q.; Tong, L.; Still, W. C.; Sames, D., Combinatorial approach to the development of fluorescent sensors for nanomolar aqueous copper, Tetrahedron Lett. 2000, 41, 9601–9605CrossRefGoogle Scholar
  179. 179.
    Szurdoki, F.; Ren, D.; Walt, D. R., A combinatorial approach to discover new chelators for optical metal ion sensing, Anal. Chem. 2000, 72, 5250–5257CrossRefGoogle Scholar
  180. 180.
    Castillo, M.; Rivero, I. A., Combinatorial synthesis of fluorescent trialkylphosphine sulfides as sensor materials for metal ions of environmental concern, ARKIVOC 2003, 11, 193–202Google Scholar
  181. 181.
    Mello, J. V.; Finney, N. S., Reversing the discovery paradigm: A new approach to the combinatorial discovery of fluorescent chemosensors, J. Am. Chem. Soc. 2005, 127, 10124–10125CrossRefGoogle Scholar
  182. 182.
    Hagihara, M.; Fukuda, M.; Hasegawa, T.; Morii, T., A modular strategy for tailoring fluorescent biosensors from ribonucleopeptide complexes, J. Am. Chem. Soc. 2006, 128, 12932–12940CrossRefGoogle Scholar
  183. 183.
    Wang, S.; Chang, Y.-T., Combinatorial synthesis of benzimidazolium dyes and its diversity directed application toward gtp-selective fluorescent chemosensors, J. Am. Chem. Soc. 2006, 128, 10380–10381CrossRefGoogle Scholar
  184. 184.
    Buryak, A.; Severin, K., Dynamic combinatorial libraries of dye complexes as sensors, Angew. Chem. Int. Ed. 2005, 44, 7935–7938CrossRefGoogle Scholar
  185. 185.
    Buryak, A.; Severin, K., Easy to optimize: Dynamic combinatorial libraries of metal-dye complexes as flexible sensors for tripeptides, J. Comb. Chem. 2006, 8, 540–543CrossRefGoogle Scholar
  186. 186.
    Li, Q.; Lee, J.-S.; Ha, C.; Park, C. B.; Yang, G.; Gan, W. B.; Chang, Y.-T., Solid-phase synthesis of styryl dyes and their application as amyloid sensors, Angew. Chem. Int. Ed. 2004, 46, 6331–6335CrossRefGoogle Scholar
  187. 187.
    Rosania, G. R.; Lee, J. W.; Ding, L.; Yoon, H.-S.; Chang, Y.-T., Combinatorial approach to organelle-targeted fluorescent library based on the styryl scaffold, J. Am. Chem. Soc. 2003, 125, 1130–1131CrossRefGoogle Scholar
  188. 188.
    Shedden, K.; Brumer, J.; Chang, Y. T.; Rosania, G. R., Chemoinformatic analysis of a supertargeted combinatorial library of styryl molecules, J. Chem. Inf. Comput. Sci. 2003, 43, 2068–2080Google Scholar
  189. 189.
    Basabe-Desmonts, L.; Beld, J.; Zimmerman, R. S.; Hernando, J.; Mela, P.; Garcia Parajo, M. F.; van Hulst, N. F.; van den Berg, A.; Reinhoudt, D. N.; Crego-Calama, M., A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass, J. Am. Chem. Soc. 2004, 126, 7293–7299CrossRefGoogle Scholar
  190. 190.
    Basabe-Desmonts, L.; Zimmerman, R. S.; Reinhoudt, D. N.; Crego-Calama, M., Combinatorial method for surface-confined sensor design and fabrication, Springer Ser. Chem. Sens. Biosens. 2005, 3, 169–188CrossRefGoogle Scholar
  191. 191.
    Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M., Combinatorial fabrication of fluorescent patterns with metal ions using soft lithography, Adv. Mater. 2006, 18, 1028–1032CrossRefGoogle Scholar
  192. 192.
    Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M., Design of fluorescent materials for chemical sensing, Chem. Soc. Rev. 2007, 36, 993–1017CrossRefGoogle Scholar
  193. 193.
    Chojnacki, P.; Werner, T.; Wolfbeis, O. S., Combinatorial approach towards materials for optical ion sensors, Microchim. Acta 2004, 147, 87–92CrossRefGoogle Scholar
  194. 194.
    Potyrailo, R. A., Expanding combinatorial methods from automotive to sensor coatings, Polym. Mate. Sci. Eng. Polym. Prepr. 2004, 90, 797–798Google Scholar
  195. 195.
    Hassib, L.; Potyrailo, R. A., Combinatorial development of polymer coating formulations for chemical sensor applications, Polym. Prepr. 2004, 45, 211–212Google Scholar
  196. 196.
    Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J., Acoustic-wave sensors for high-throughput screening of materials, In High Throughput Analysis: A Tool for Combinatorial Materials Science; Potyrailo, R. A.; Amis, E. J., Eds.; Kluwer/Plenum: New York, NY, 2003; ch. 11Google Scholar
  197. 197.
    Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J., Multifunctional sensor system for highthroughput primary, secondary, and tertiary screening of combinatorially developed materials, Rev. Sci. Instrum. 2004, 75, 2177–2186CrossRefGoogle Scholar
  198. 198.
    Potyrailo, R. A.; McCloskey, P. J.; Ramesh, N.; Surman, C. M. Sensor devices containing co-polymer substrates for analysis of chemical and biological species in water and air; US Patent Application 2005133697: 2005Google Scholar
  199. 199.
    Potyrailo, R. A.; McCloskey, P. J.; Wroczynski, R. J.; Morris, W. G., High-throughput determination of quantitative structure-property relationships using resonant multisensor system: Solvent-resistance of bisphenol a polycarbonate copolymers, Anal. Chem. 2006, 78, 3090–3096CrossRefGoogle Scholar
  200. 200.
    Potyrailo, R. A.; Morris, W. G., Wireless resonant sensor array for high-throughput screening of materials, Rev. Sci. Instrum. 2007, 78, 072214CrossRefGoogle Scholar
  201. 201.
    Wu, X.; Kim, J.; Dordick, J. S., Enzymatically and combinatorially generated array-based polyphenol metal ion sensor, Biotechnol. Prog. 2000, 16, 513–516CrossRefGoogle Scholar
  202. 202.
    Kim, D.-Y.; Wu, X.; Dordick, J. S., Generation of environmentally compatible polymer libraries via combinatorial biocatalysis, In Biocatalysis in Polymer Science; American Chemical Society: Washington, DC, 2003; Vol. 840; 34–49Google Scholar
  203. 203.
    Mirsky, V. M.; Kulikov, V., Combinatorial electropolymerization: Concept, equipment and applications, In High Throughput Analysis: A Tool for Combinatorial Materials Science; Potyrailo, R.A., Amis, E. J., Eds.; Kluwer/Plenum: New York, NY, 2003; ch 20, pp. 431–446Google Scholar
  204. 204.
    Kulikov, V.; Mirsky, V. M., Equipment for combinatorial electrochemical polymerization and high-throughput investigation of electrical properties of the synthesized polymers, Meas. Sci. Technol. 2004, 15, 49–54CrossRefGoogle Scholar
  205. 205.
    Mirsky, V. M.; Kulikov, V.; Hao, Q.; Wolfbeis, O. S., Multiparameter high throughput characterization of combinatorial chemical microarrays of chemosensitive polymers, Macromol. Rapid Commun. 2004, 25, 253–258CrossRefGoogle Scholar
  206. 206.
    Kulikov, V.; Mirsky, V. M.; Delaney, T. L.; Donoval, D.; Koch, A. W.; Wolfbeis, O. S., High-throughput analysis of bulk and contact conductance of polymer layers on electrodes, Meas. Sci. Technol. 2005, 16, 95–99CrossRefGoogle Scholar
  207. 207.
    Xiang, Y.; LaVan, D., Parallel microfluidic synthesis of conductive biopolymers, Proc. 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications 2006, 1–5Google Scholar
  208. 208.
    Mirsky, V. M.; Hirsch, T.; Piletsky, S. A.; Wolfbeis, O. S., A spreader-bar approach to molecular architecture: Formation of stable artificial chemoreceptors, Angew. Chem. Int. Ed. 1999, 38, 1108–1110CrossRefGoogle Scholar
  209. 209.
    Lahav, M.; Katz, E.; Willner, I., Photochemical imprint of molecular recognition sites in two-dimensional monolayers assembled on au electrodes: Effects of the monolayer structures on the binding affinities and association kinetics to the imprinted interfaces, Langmuir 2001, 17, 7387–7395CrossRefGoogle Scholar
  210. 210.
    Prodromidis, M. I.; Hirsch, T.; Mirsky, V. M.; Wolfbeis, O. S., Enantioselective artificial receptors formed by the spreader-bar technique, Electroanalysis 2003, 15, 1795–1798CrossRefGoogle Scholar
  211. 211.
    Tappura, K.; IVikholm-Lundin, I.; Albers, W. M., Lipoate-based imprinted self-assembled molecular thin films for biosensor applications, Biosens. Bioelectron. 2007, 22, 912–919CrossRefGoogle Scholar
  212. 212.
    Cho, E. J.; Tao, Z.; Tehan, E. C.; Bright, F. V., Multianalyte pin-printed biosensor arrays based on protein-doped xerogels, Anal. Chem. 2002, 74, 6177–6184CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Chemical and Biological Sensing Laboratory, Chemistry Technologies and Material CharacterizationGeneral Electric Global Research, NiskayunaNew YorkUSA
  2. 2.Department of NanobiotechnologyLausitz University of Applied SciencesSenftenbergGermany

Personalised recommendations