Advertisement

Aptamers in Affinity Separations:Capillary Electrophoresis

  • Jeffrey W. Guthrie
  • Yuanhua Shao
  • X. Chris Le
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

Assays employing aptamers in capillary electrophoresis (CE), including competitive and noncompetitive assays, fluorescence polarization (FP) assays, nonequilibrium capillary electrophoresis of equilibrium mixtures, and affinity-polymerase chain reaction-CE assays, are summarized. These assays can be used to estimate dissociation rate and equilibrium binding constants, determine binding stoichiometries, study molecular interactions, and quantitatively determine specific analytes (e.g., proteins) in complex media. They can potentially be completed in under 60 s, detect zeptomol (10−24) amounts of analyte, be utilized in complex media with little or no cross reaction, and target a number of different analytes of biological, environmental, and clinical importance. This chapter briefly overviews the process of aptamer selection using CE and discusses the various CE-based bioanalytical methods that have been used to study biomolecular interactions.

Keywords

Capillary Electrophoresis Fluorescence Resonance Energy Transfer Fluorescence Polarization Competitive Assay Capillary Electrophoresis Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dovichi, N.J. and Zhang, J. (2000) How capillary electrophoresis sequenced the human genome. Angew. Chem. Int. Ed. 39:4463–4468.CrossRefGoogle Scholar
  2. 2.
    Berezovski, M. and Krylov, S.N. (2005) Thermochemistry of protein—DNA interaction studied with temperature-controlled nonequilibrium capillary electrophoresis of equilibrium mixtures. Anal. Chem. 77:1526–1529.CrossRefGoogle Scholar
  3. 3.
    Berezovski, M., Nutiu, R., Li, Y. and Krylov, S.N. (2003) Affinity analysis of a protein— aptamer complex using nonequilibrium capillary electrophoresis of equilibrium mixtures. Anal. Chem. 75:1382–1386.CrossRefGoogle Scholar
  4. 4.
    Buchanan, D.D., Jameson, E.E., Perlette, J., Malik, A. and Kennedy, R.T. (2003) Effect of buffer, electric field, and separation time on detection of aptamer—ligand complexes for affinity probe capillary electrophoresis. Electrophoresis 24:1375–1382.CrossRefGoogle Scholar
  5. 5.
    Fu, H., Guthrie, J.W. and Le, X.C. (2006) Study of binding stoichiometries of the human immunodeficiency virus type 1 reverse transcriptase by capillary electrophoresis and laser-induced fluorescence polarization using aptamers as probes. Electrophoresis 27:433–441.CrossRefGoogle Scholar
  6. 6.
    German, I., Buchanan, D.D. and Kennedy, R.T. (1998) Aptamers as ligands in affinity probe capillary electrophoresis. Anal. Chem. 70:4540–4545.CrossRefGoogle Scholar
  7. 7.
    Haes, A.J., Giordano, B.C. and Collins, G.E. (2006) Aptamer-based detection and quantitative analysis of ricin using affinity probe capillary electrophoresis. Anal. Chem. 78:3758–3764.CrossRefGoogle Scholar
  8. 8.
    Huang, C., Cao, Z., Chang, H. and Tan, W. (2004) Protein—protein interaction studies based on molecular aptamers by affinity capillary electrophoresis. Anal. Chem. 76:6973–6981.CrossRefGoogle Scholar
  9. 9.
    Pavski, V. and Le, X.C. (2001) Detection of human immunodeficiency virus type 1 reverse transcriptase using aptamers as probes in affinity capillary electrophoresis. Anal. Chem. 73:6070–6076.CrossRefGoogle Scholar
  10. 10.
    Wang, H., Lu, M. and Le, X.C. (2005) DNA-driven focusing for protein–DNA binding assays using capillary electrophoresis. Anal. Chem. 77:4985–4990.CrossRefGoogle Scholar
  11. 11.
    Zhang, H., Wang, Z., Li, X. and Le, X.C. (2006) Ultrasensitive detection of proteins by amplification of affinity aptamers. Angew. Chem. Int. Ed. 45:1576–1580.CrossRefGoogle Scholar
  12. 12.
    Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510.CrossRefGoogle Scholar
  13. 13.
    Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346:818–822.CrossRefGoogle Scholar
  14. 14.
    Mendonsa, S.D. and Bowser, M.T. (2004) In vitro evolution of functional DNA using capillary electrophoresis. J. Am. Chem. Soc. 126:20–21.CrossRefGoogle Scholar
  15. 15.
    Mendonsa, S.D. and Bowser, M.T. (2004) In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Anal. Chem. 76:5387–5392.CrossRefGoogle Scholar
  16. 16.
    Mendonsa, S.D. and Bowser, M.T. (2005) In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. J. Am. Chem. Soc. 127:9382–9383.CrossRefGoogle Scholar
  17. 17.
    Mosing, R.K., Mendonsa, S.D. and Bowser, M.T. (2005) Capillary electrophoresis: SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 77:6107–6112.CrossRefGoogle Scholar
  18. 18.
    Berezovski, M., Drabovich, A., Krylova, S.M., Musheev, M., Okhonin, V., Petrov, A. and Krylov, S.N. (2005) Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J. Am. Chem. Soc. 127:3165–3171.CrossRefGoogle Scholar
  19. 19.
    Tang, J., Xie, J., Shao, N. and Yan, Y. (2006) The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods. Electrophoresis 27:1303–1311.CrossRefGoogle Scholar
  20. 20.
    Drabovich, A., Berezovski, M. and Krylov, S.N. (2005) Selection of smart aptamers by equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM). J. Am. Chem. Soc. 127:11224–11225.CrossRefGoogle Scholar
  21. 21.
    Drabovich, A.P., Berezovski, M., Okhonin, V. and Krylov, S.N. (2006) Selection of smart aptamers by methods of kinetic capillary electrophoresis. Anal. Chem. 78:3171–3178.CrossRefGoogle Scholar
  22. 22.
    Mallikaratchy, P., Stahelin, R.V., Cao, Z., Cho, W. and Tan, W. (2006) Selection of DNA lig-ands for protein kinase C-δ. Chem. Commun. (Cambridge, United Kingdom) 30:3229–3231.CrossRefGoogle Scholar
  23. 23.
    Berezovski, M., Musheev, M., Drabovich, A. and Krylov, S.N. (2006) Non-SELEX selection of aptamers. J. Am. Chem. Soc. 128:1410–1411.CrossRefGoogle Scholar
  24. 24.
    Burgi, D.S. (1993) Large volume stacking of anions in capillary electrophoresis using an electroosmotic flow modifier as a pump. Anal. Chem. 65:3726–3729.CrossRefGoogle Scholar
  25. 25.
    Auriola, S., Jaaskelainen, I., Regina, M. and Urtti, A. (1996) Analysis of oligonucleotides by on-column transient capillary isotachophoresis and capillary electrophoresis in polyethylene glycol-filled columns. Anal. Chem. 68:3907–3911.CrossRefGoogle Scholar
  26. 26.
    Shihabi, Z.K. (2000) Stacking in capillary zone electrophoresis. J. Chromatogr. A 902:107–117.CrossRefGoogle Scholar
  27. 27.
    Wanders, B.J. and Everaerts, F.M. (1994) Isotachophoresis in capillary electrophoresis. In: Landers, J.P. (ed.) Handbook of capillary electrophoresis. CRC Press, Ann Arbor, MI, pp. 111–127.Google Scholar
  28. 28.
    Xiong, Y., Park, S.R. and Swerdlow, H. (1998) Base stacking: pH-mediated on-column sample concentration for capillary DNA sequencing. Anal. Chem. 70:3605–3611.CrossRefGoogle Scholar
  29. 29.
    Davis, K., Abrams, B., Lin, Y. and Jayasena, S. (1996) Use of a high affinity DNA ligand in flow cytometry. Nucleic Acids Res. 24:702–706.CrossRefGoogle Scholar
  30. 30.
    Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H. and Toole, J.J. (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature (Lond.) 355:564–566.CrossRefGoogle Scholar
  31. 31.
    Schneider, D.J., Feigon, J., Hostomsky, Z. and Gold, L. (1995) High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus. Biochemistry 34:9599–9610.CrossRefGoogle Scholar
  32. 32.
    Kankia, B.I. and Marky, L.A. (2001) Folding of the thrombin aptamer into a G-quadruplex with Sr2+: stability, heat, and hydration. J. Am. Chem. Soc. 123:10799–10804.CrossRefGoogle Scholar
  33. 33.
    Lee, J.F., Hesselberth, J.R., Meyers, L.A. and Ellington, A.D. (2004) Aptamer database. Nucleic Acids Res. 32:D95–D100.CrossRefGoogle Scholar
  34. 34.
    Brumbt, A., Ravelet, C., Grosset, C., Ravel, A., Villet, A. and Peyrin, E. (2005) Chiral stationary phase based on a biostable L-RNA aptamer. Anal. Chem. 77:1993–1998.CrossRefGoogle Scholar
  35. 35.
    Nutiu, R. and Li, Y. (2005) In vitro selection of structure-switching signaling aptamers. Angew. Chem. Int. Ed. 44:1061–1065.CrossRefGoogle Scholar
  36. 36.
    Kennedy, R.T. (1999) Bioanalytical applications of fast capillary electrophoresis. Anal. Chim. Acta 400:163–180.CrossRefGoogle Scholar
  37. 37.
    Zhang, H., Li, X.-F. and Le, X.C. (2008) Tunable aptamer capillary electrophoresis and its application to protein analysis. J. Am. Chem. Soc. 130:34–35.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jeffrey W. Guthrie
  • Yuanhua Shao
  • X. Chris Le

There are no affiliations available

Personalised recommendations