Fluorescent Ribozyme and Deoxyribozyme Sensors

  • William Chiuman
  • Yingfu Li
Part of the Integrated Analytical Systems book series (ANASYS)


The development of allosteric nucleic acid enzymes (NAEs) has made NAEs very attractive for a wide variety of biotechnological applications, including biosensing, diagnostics, drug screening, and molecular computation. Although NAEs alone might have limited values for analytical application due to the rather small scope of their substrates and cofactors, modular characteristics of aptamers and NAEs permit the easy design of combined sensors where the aptamer acts as the molecular recognition element (MRE) and the NAE functions as a reporter. To facilitate the exploitation of NAEs for biosensing applications, fluorescence methods have been increasingly explored as better alternatives to radioisotope-based detection techniques. In this chapter, we first survey the strategies that have been employed to graft fluorescence-signaling moieties onto NAEs. We then review our experimental efforts in creating a group of fluorescence-signaling and RNA-cleaving deoxyribozymes (DNAzymes) intended for the design of fluorescent sensors. Last, we discuss the diverse engineering approaches that can transmit the binding status of an aptamer to the activation or repression of catalytic activity in fluorescent NAE sensors.


Fluorescence Resonance Energy Transfer Communication Module Cleavage Activity Hammerhead Ribozyme Fluorescence Resonance Energy Transfer Efficiency 



We thank the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, Canada Foundation for Innovation, Canada Research Chairs Program, Ontario Innovation Trust, and Ontario Premier Research Excellence Award Program for research support.


  1. 1.
    Mandal, M. and Breaker, R.R. (2004) Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 5:451–463.CrossRefGoogle Scholar
  2. 2.
    Tucker, B.J. and Breaker, R.R. (2005) Riboswitches as versatile gene control elements. Curr. Opin. Struct. Biol. 15:342–348.CrossRefGoogle Scholar
  3. 3.
    Winkler, W.C. (2005) Riboswitches and the role of noncoding RNAs in bacterial metabolic control. Curr. Opin. Chem. Biol. 9:594–602.CrossRefGoogle Scholar
  4. 4.
    Winkler, W.C. and Breaker, R.R. (2005) Regulation of bacterial gene expression by ribos-witches. Annu. Rev. Microbiol. 59:487–517.CrossRefGoogle Scholar
  5. 5.
    Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346:818–822.CrossRefGoogle Scholar
  6. 6.
    Robertson, D.L. and Joyce, G.F. (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature (Lond.) 344:467–468.CrossRefGoogle Scholar
  7. 7.
    Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510.CrossRefGoogle Scholar
  8. 8.
    Lee, J.F., Hesselberth, J.R., Meyers, L.A. and Ellington, A.D. (2004) Aptamer database. Nucleic Acids Res. 32:D95–D100.CrossRefGoogle Scholar
  9. 9.
    Thodima, V., Piroozina, M. and Deng, Y. (2006) RiboaptDB: a comprehensive database of ribozymes and aptamers. BMC Bioinf. 7(suppl. 2):S6.CrossRefGoogle Scholar
  10. 10.
    Breaker, R.R. (2004) Natural and engineered nucleic acids as tools to explore biology. Nature (Lond.) 432:838–845.CrossRefGoogle Scholar
  11. 11.
    Fedor, M.J. and Williamson, J.R. (2005) The catalytic diversity of RNAs. Nat. Rev. Mol. Cell. Biol. 6:399–412.CrossRefGoogle Scholar
  12. 12.
    Achenbach, J.C., Chiuman, W., Cruz, R.P. and Li, Y. (2004) DNAzymes: from creation in vitro to application in vivo. Curr. Pharm. Biotechnol. 5:321–336.CrossRefGoogle Scholar
  13. 13.
    Joyce, G.F. (2004) Directed evolution of nucleic acid enzymes. Annu. Rev. Biochem. 73: 791–836.CrossRefGoogle Scholar
  14. 14.
    Silverman, S.K. (2005) In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res. 33:6151–6163.CrossRefGoogle Scholar
  15. 15.
    Förster, T. (1948) Intermolecular energy migration and fluorescence. Ann. Phys. 2:55–75.CrossRefGoogle Scholar
  16. 16.
    Lakowicz, J.R. (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer/Plenum, New York.Google Scholar
  17. 17.
    Bernacchi, S. and Mély, Y. (2001) Exciton interaction in molecular beacons: a sensitive sensor for short range modifications of the nucleic acid structure. Nucleic Acids Res. 29:e62.CrossRefGoogle Scholar
  18. 18.
    Marras, S.A.E., Kramer, F.R. and Tyagi, S. (2002) Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. 30:e122.CrossRefGoogle Scholar
  19. 19.
    Perkins, T.A., Wolf, D.E. and Goodchild, J. (1996) Fluorescence resonance energy transfer analysis of ribozyme kinetics reveals the mode of action of a facilitator oligonucleotide. Biochemistry 35:16370–16377.CrossRefGoogle Scholar
  20. 20.
    Walter, N.G. and Burke, J.M. (1997) Real-time monitoring of hairpin ribozyme kinetics through base-specific quenching of fluorescein-labeled substrates. RNA 3:392–404.Google Scholar
  21. 21.
    Li, J. and Lu, Y. (2000) A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 122:10466–10467.CrossRefGoogle Scholar
  22. 22.
    Lu, Y., Liu, J., Li, J., Bruesehoff, P.J., Pavot, C.M.B. and Brown, A.K. (2003) New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosens. Bioelectron. 18:529–540.CrossRefGoogle Scholar
  23. 23.
    Jenne, A., Gmlein, W., Raffler, N. and Famulok, M. (1999) Real-time characterization of ribozymes by fluorescence resonance energy transfer. Angew. Chem. Int. Ed. 38:1300–1303.CrossRefGoogle Scholar
  24. 24.
    Vitiello, D., Pecchia, B. and Burke, J.M. (2000) Intracellular ribozyme-catalyzed trans-cleavage of RNA monitored by fluorescence resonance energy transfer. RNA 6:628–637.CrossRefGoogle Scholar
  25. 25.
    Stojanovic, M.N., de Prada, P. and Landry, D.W. (2000) Homogeneous assays based on deoxyribozyme catalysis. Nucleic Acids Res. 28:2915–2918.CrossRefGoogle Scholar
  26. 26.
    Liu, J. and Lu, Y. (2003) Improving fluorescent DNAzyme biosensors by combining interand intramolecular quenchers. Anal. Chem. 75:6666–6672.CrossRefGoogle Scholar
  27. 27.
    Liu, J., Brown, A.K., Meng, X., Cropek, D.M., Istok, J.D., Watson, D.B. and Lu, Y. (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc. Natl. Acad. Sci. USA 104:2056–2061.CrossRefGoogle Scholar
  28. 28.
    Chiuman, W. and Li, Y. (2007) Efficient signaling platforms built from a small catalytic DNA and doubly labeled fluorogenic substrates. Nucleic Acids Res. 35:401–405.CrossRefGoogle Scholar
  29. 29.
    Mei, S.H., Liu, Z., Brennan, J.D. and Li, Y. (2003) An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. J. Am. Chem. Soc. 125:412–420.CrossRefGoogle Scholar
  30. 30.
    Liu, Z., Mei, S.H., Brennan, J.D. and Li, Y. (2003) Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences. J. Am. Chem. Soc. 125:7539–7545.CrossRefGoogle Scholar
  31. 31.
    Rupcich, N., Chiuman, W., Nutiu, R., Mei, S., Flora, K.K., Li, Y. and Brennan, J.D. (2006) Quenching of fluorophore-labeled DNA oligonucleotides by divalent metal ions: implications for selection, design, and applications of signaling aptamers and signaling deoxyribozymes. J. Am. Chem. Soc. 128:780–790.CrossRefGoogle Scholar
  32. 32.
    Chiuman, W. and Li, Y. (2006) Revitalization of six abandoned catalytic DNA species reveals a common three-way junction framework and diverse catalytic cores. J. Mol. Biol. 357:748–754.CrossRefGoogle Scholar
  33. 33.
    Chiuman, W. and Li, Y. (2006) Evolution of high-branching deoxyribozymes from a catalytic DNA with a three-way junction. Chem. Biol. 13:1061–1069.CrossRefGoogle Scholar
  34. 34.
    Shen, Y., Brennan, J.D. and Li, Y. (2005) Characterizing the secondary structure and identifying functionally essential nucleotides of pH6DZ1, a fluorescence-signaling and RNA-cleaving deoxyribozyme. Biochemistry 44:12066–12076.CrossRefGoogle Scholar
  35. 35.
    Shen, Y., Chiuman, W., Brennan, J.D. and Li, Y. (2006) Catalysis and rational engineering of trans-acting pH6DZ1, an RNA-cleaving and fluorescence-signaling deoxyribozyme with a four-way junction structure. ChemBioChem 7:1343–1348.CrossRefGoogle Scholar
  36. 36.
    Kandadai, S.A. and Li, Y. (2006) Characterization of a catalytically efficient acidic RNA-cleaving deoxyribozyme. Nucleic Acids Res. 33:7164–7175.CrossRefGoogle Scholar
  37. 37.
    Ali, M.M., Kandadai, S.A. and Li, Y. (2007) Characterization of pH3DZ1: an RNA-cleaving deoxyribozyme with optimal activity at pH 3. Can. J. Chem. 85:261–273.CrossRefGoogle Scholar
  38. 38.
    Patel, D.J., Suri, A.K., Jiang, F., Jiang, L., Fan, P., Kumar, R.A. and Nonin, S. (1997) Structure, recognition and adaptive binding in RNA aptamer complexes. J. Mol. Biol. 272:645–664.CrossRefGoogle Scholar
  39. 39.
    Hermann, T. and Patel, D.J. (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825.CrossRefGoogle Scholar
  40. 40.
    Tang, J. and Breaker, R.R. (1997) Rational design of allosteric ribozymes. Chem. Biol. 4:453–459.CrossRefGoogle Scholar
  41. 41.
    Tang, J. and Breaker, R.R. (1997) Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection. RNA 3:914–925.Google Scholar
  42. 42.
    Soukup, G.A. and Breaker, R.R. (1999) Engineering precision RNA molecular switches. Proc. Natl. Acad. Sci. USA 96:3584–3589.CrossRefGoogle Scholar
  43. 43.
    Sekella, P.T., Rueda, D. and Walter, N.G. (2002) A biosensor for theophylline based on fluorescence detection of ligand-induced hammerhead ribozyme cleavage. RNA 8:1242–1252.CrossRefGoogle Scholar
  44. 44.
    Araki, M., Okuno, Y., Hara, Y. and Sugiura, Y. (1998) Allosteric regulation of a ribozyme activity through ligand-induced conformational change. Nucleic Acids Res. 26:3379–3384.CrossRefGoogle Scholar
  45. 45.
    Robertson, M.P. and Ellington, A.D. (2000) Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Res. 28:1751–1759.CrossRefGoogle Scholar
  46. 46.
    Soukup, G.A., Emilsson, G.A.M. and Breaker, R.R. (2000) Altering molecular recognition of RNA aptamers by allosteric selection. J. Mol. Biol. 298:623–632.CrossRefGoogle Scholar
  47. 47.
    Kertsburg, A. and Soukup, G.A. (2002) A versatile communication module for controlling RNA folding and catalysis. Nucleic Acids Res. 30:4599–4606.CrossRefGoogle Scholar
  48. 48.
    Koizumi, M., Soukup, G.A., Kerr, J.N.Q. and Breaker, R.R. (1999) Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat. Struct. Biol. 6: 1062–1071.CrossRefGoogle Scholar
  49. 49.
    Piganeau, N., Thuillier, V. and Famulok, M. (2001) In vitro selection of allosteric ribozymes: theory and experimental validation. J. Mol. Biol. 312:1177–1190.CrossRefGoogle Scholar
  50. 50.
    Srinivasan, J., Cload, S.T., Hamaguchi, N., Kurz, J., Keene, S., Kurz, M., Boomer, R.M., Blanchard, J., Epstein, D., Wilson, C. and Diener, J.L. (2004) ADP-specific sensors enable universal assay of protein kinase activity. Chem. Biol. 11:499–508.CrossRefGoogle Scholar
  51. 51.
    Ferguson, A., Boomer, R.M., Kurz, M., Keene, S.C., Diener, J.L., Keefe, A.D., Wilson, C. and Cload, S.T. (2004) A novel strategy for selection of allosteric ribozymes yields RiboReporter sensors for caffeine and aspartame. Nucleic Acids Res. 32:1756–1766.CrossRefGoogle Scholar
  52. 52.
    Hartig, J.S., Najafi-Shoushtari, S.H., Grüne, I., Yan, A., Ellington, A.D. and Famulok, M. (2002) Protein-dependent ribozymes report molecular interactions in real time. Nat. Biotechnol. 20:717–722.CrossRefGoogle Scholar
  53. 53.
    Tyagi, S. and Kramer, F.R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14:303–308.CrossRefGoogle Scholar
  54. 54.
    Stojanovic, M.N., de Prada, P. and Landry, D.W. (2001) Catalytic molecular beacons. ChemBioChem 2:411–415.CrossRefGoogle Scholar
  55. 55.
    Stojanovic, M.N. and Stefanovic, D. (2003) Deoxyribozyme-based half adder. J. Am. Chem. Soc. 125:6673–6676.CrossRefGoogle Scholar
  56. 56.
    Stojanovic, M.N., Mitchell, T.E. and Stefanovic, D. (2002) Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 124:3555–3561.CrossRefGoogle Scholar
  57. 57.
    Lederman, H., Macdonald, J., Stefanovic, D. and Stojanovic, M.N. (2006) Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. Biochemistry 45: 1194–1199.CrossRefGoogle Scholar
  58. 58.
    Stojanovic, M.N. and Stefanovic, D. (2003) A deoxyribozyme-based molecular automaton. Nat. Biotechnol. 21:1069–1074.CrossRefGoogle Scholar
  59. 59.
    Macdonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews, B.L., Stefanovic, D. and Stojanovic, M.N. (2006) Medium scale integration of molecular logic gates in an automaton. Nano Lett. 6:2598–2603.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • William Chiuman
    • 1
  • Yingfu Li
    • 1
  1. 1.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations