Skip to main content

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

The development of allosteric nucleic acid enzymes (NAEs) has made NAEs very attractive for a wide variety of biotechnological applications, including biosensing, diagnostics, drug screening, and molecular computation. Although NAEs alone might have limited values for analytical application due to the rather small scope of their substrates and cofactors, modular characteristics of aptamers and NAEs permit the easy design of combined sensors where the aptamer acts as the molecular recognition element (MRE) and the NAE functions as a reporter. To facilitate the exploitation of NAEs for biosensing applications, fluorescence methods have been increasingly explored as better alternatives to radioisotope-based detection techniques. In this chapter, we first survey the strategies that have been employed to graft fluorescence-signaling moieties onto NAEs. We then review our experimental efforts in creating a group of fluorescence-signaling and RNA-cleaving deoxyribozymes (DNAzymes) intended for the design of fluorescent sensors. Last, we discuss the diverse engineering approaches that can transmit the binding status of an aptamer to the activation or repression of catalytic activity in fluorescent NAE sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandal, M. and Breaker, R.R. (2004) Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 5:451–463.

    Article  CAS  Google Scholar 

  2. Tucker, B.J. and Breaker, R.R. (2005) Riboswitches as versatile gene control elements. Curr. Opin. Struct. Biol. 15:342–348.

    Article  CAS  Google Scholar 

  3. Winkler, W.C. (2005) Riboswitches and the role of noncoding RNAs in bacterial metabolic control. Curr. Opin. Chem. Biol. 9:594–602.

    Article  CAS  Google Scholar 

  4. Winkler, W.C. and Breaker, R.R. (2005) Regulation of bacterial gene expression by ribos-witches. Annu. Rev. Microbiol. 59:487–517.

    Article  CAS  Google Scholar 

  5. Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346:818–822.

    Article  CAS  Google Scholar 

  6. Robertson, D.L. and Joyce, G.F. (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature (Lond.) 344:467–468.

    Article  CAS  Google Scholar 

  7. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510.

    Article  CAS  Google Scholar 

  8. Lee, J.F., Hesselberth, J.R., Meyers, L.A. and Ellington, A.D. (2004) Aptamer database. Nucleic Acids Res. 32:D95–D100.

    Article  CAS  Google Scholar 

  9. Thodima, V., Piroozina, M. and Deng, Y. (2006) RiboaptDB: a comprehensive database of ribozymes and aptamers. BMC Bioinf. 7(suppl. 2):S6.

    Article  Google Scholar 

  10. Breaker, R.R. (2004) Natural and engineered nucleic acids as tools to explore biology. Nature (Lond.) 432:838–845.

    Article  CAS  Google Scholar 

  11. Fedor, M.J. and Williamson, J.R. (2005) The catalytic diversity of RNAs. Nat. Rev. Mol. Cell. Biol. 6:399–412.

    Article  CAS  Google Scholar 

  12. Achenbach, J.C., Chiuman, W., Cruz, R.P. and Li, Y. (2004) DNAzymes: from creation in vitro to application in vivo. Curr. Pharm. Biotechnol. 5:321–336.

    Article  CAS  Google Scholar 

  13. Joyce, G.F. (2004) Directed evolution of nucleic acid enzymes. Annu. Rev. Biochem. 73: 791–836.

    Article  CAS  Google Scholar 

  14. Silverman, S.K. (2005) In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res. 33:6151–6163.

    Article  CAS  Google Scholar 

  15. Förster, T. (1948) Intermolecular energy migration and fluorescence. Ann. Phys. 2:55–75.

    Article  Google Scholar 

  16. Lakowicz, J.R. (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer/Plenum, New York.

    Google Scholar 

  17. Bernacchi, S. and Mély, Y. (2001) Exciton interaction in molecular beacons: a sensitive sensor for short range modifications of the nucleic acid structure. Nucleic Acids Res. 29:e62.

    Article  CAS  Google Scholar 

  18. Marras, S.A.E., Kramer, F.R. and Tyagi, S. (2002) Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. 30:e122.

    Article  Google Scholar 

  19. Perkins, T.A., Wolf, D.E. and Goodchild, J. (1996) Fluorescence resonance energy transfer analysis of ribozyme kinetics reveals the mode of action of a facilitator oligonucleotide. Biochemistry 35:16370–16377.

    Article  CAS  Google Scholar 

  20. Walter, N.G. and Burke, J.M. (1997) Real-time monitoring of hairpin ribozyme kinetics through base-specific quenching of fluorescein-labeled substrates. RNA 3:392–404.

    CAS  Google Scholar 

  21. Li, J. and Lu, Y. (2000) A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 122:10466–10467.

    Article  CAS  Google Scholar 

  22. Lu, Y., Liu, J., Li, J., Bruesehoff, P.J., Pavot, C.M.B. and Brown, A.K. (2003) New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosens. Bioelectron. 18:529–540.

    Article  CAS  Google Scholar 

  23. Jenne, A., Gmlein, W., Raffler, N. and Famulok, M. (1999) Real-time characterization of ribozymes by fluorescence resonance energy transfer. Angew. Chem. Int. Ed. 38:1300–1303.

    Article  CAS  Google Scholar 

  24. Vitiello, D., Pecchia, B. and Burke, J.M. (2000) Intracellular ribozyme-catalyzed trans-cleavage of RNA monitored by fluorescence resonance energy transfer. RNA 6:628–637.

    Article  CAS  Google Scholar 

  25. Stojanovic, M.N., de Prada, P. and Landry, D.W. (2000) Homogeneous assays based on deoxyribozyme catalysis. Nucleic Acids Res. 28:2915–2918.

    Article  CAS  Google Scholar 

  26. Liu, J. and Lu, Y. (2003) Improving fluorescent DNAzyme biosensors by combining interand intramolecular quenchers. Anal. Chem. 75:6666–6672.

    Article  CAS  Google Scholar 

  27. Liu, J., Brown, A.K., Meng, X., Cropek, D.M., Istok, J.D., Watson, D.B. and Lu, Y. (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc. Natl. Acad. Sci. USA 104:2056–2061.

    Article  CAS  Google Scholar 

  28. Chiuman, W. and Li, Y. (2007) Efficient signaling platforms built from a small catalytic DNA and doubly labeled fluorogenic substrates. Nucleic Acids Res. 35:401–405.

    Article  CAS  Google Scholar 

  29. Mei, S.H., Liu, Z., Brennan, J.D. and Li, Y. (2003) An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. J. Am. Chem. Soc. 125:412–420.

    Article  CAS  Google Scholar 

  30. Liu, Z., Mei, S.H., Brennan, J.D. and Li, Y. (2003) Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences. J. Am. Chem. Soc. 125:7539–7545.

    Article  CAS  Google Scholar 

  31. Rupcich, N., Chiuman, W., Nutiu, R., Mei, S., Flora, K.K., Li, Y. and Brennan, J.D. (2006) Quenching of fluorophore-labeled DNA oligonucleotides by divalent metal ions: implications for selection, design, and applications of signaling aptamers and signaling deoxyribozymes. J. Am. Chem. Soc. 128:780–790.

    Article  CAS  Google Scholar 

  32. Chiuman, W. and Li, Y. (2006) Revitalization of six abandoned catalytic DNA species reveals a common three-way junction framework and diverse catalytic cores. J. Mol. Biol. 357:748–754.

    Article  CAS  Google Scholar 

  33. Chiuman, W. and Li, Y. (2006) Evolution of high-branching deoxyribozymes from a catalytic DNA with a three-way junction. Chem. Biol. 13:1061–1069.

    Article  CAS  Google Scholar 

  34. Shen, Y., Brennan, J.D. and Li, Y. (2005) Characterizing the secondary structure and identifying functionally essential nucleotides of pH6DZ1, a fluorescence-signaling and RNA-cleaving deoxyribozyme. Biochemistry 44:12066–12076.

    Article  CAS  Google Scholar 

  35. Shen, Y., Chiuman, W., Brennan, J.D. and Li, Y. (2006) Catalysis and rational engineering of trans-acting pH6DZ1, an RNA-cleaving and fluorescence-signaling deoxyribozyme with a four-way junction structure. ChemBioChem 7:1343–1348.

    Article  CAS  Google Scholar 

  36. Kandadai, S.A. and Li, Y. (2006) Characterization of a catalytically efficient acidic RNA-cleaving deoxyribozyme. Nucleic Acids Res. 33:7164–7175.

    Article  Google Scholar 

  37. Ali, M.M., Kandadai, S.A. and Li, Y. (2007) Characterization of pH3DZ1: an RNA-cleaving deoxyribozyme with optimal activity at pH 3. Can. J. Chem. 85:261–273.

    Article  CAS  Google Scholar 

  38. Patel, D.J., Suri, A.K., Jiang, F., Jiang, L., Fan, P., Kumar, R.A. and Nonin, S. (1997) Structure, recognition and adaptive binding in RNA aptamer complexes. J. Mol. Biol. 272:645–664.

    Article  CAS  Google Scholar 

  39. Hermann, T. and Patel, D.J. (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825.

    Article  CAS  Google Scholar 

  40. Tang, J. and Breaker, R.R. (1997) Rational design of allosteric ribozymes. Chem. Biol. 4:453–459.

    Article  CAS  Google Scholar 

  41. Tang, J. and Breaker, R.R. (1997) Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection. RNA 3:914–925.

    CAS  Google Scholar 

  42. Soukup, G.A. and Breaker, R.R. (1999) Engineering precision RNA molecular switches. Proc. Natl. Acad. Sci. USA 96:3584–3589.

    Article  CAS  Google Scholar 

  43. Sekella, P.T., Rueda, D. and Walter, N.G. (2002) A biosensor for theophylline based on fluorescence detection of ligand-induced hammerhead ribozyme cleavage. RNA 8:1242–1252.

    Article  CAS  Google Scholar 

  44. Araki, M., Okuno, Y., Hara, Y. and Sugiura, Y. (1998) Allosteric regulation of a ribozyme activity through ligand-induced conformational change. Nucleic Acids Res. 26:3379–3384.

    Article  CAS  Google Scholar 

  45. Robertson, M.P. and Ellington, A.D. (2000) Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Res. 28:1751–1759.

    Article  CAS  Google Scholar 

  46. Soukup, G.A., Emilsson, G.A.M. and Breaker, R.R. (2000) Altering molecular recognition of RNA aptamers by allosteric selection. J. Mol. Biol. 298:623–632.

    Article  CAS  Google Scholar 

  47. Kertsburg, A. and Soukup, G.A. (2002) A versatile communication module for controlling RNA folding and catalysis. Nucleic Acids Res. 30:4599–4606.

    Article  CAS  Google Scholar 

  48. Koizumi, M., Soukup, G.A., Kerr, J.N.Q. and Breaker, R.R. (1999) Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat. Struct. Biol. 6: 1062–1071.

    Article  CAS  Google Scholar 

  49. Piganeau, N., Thuillier, V. and Famulok, M. (2001) In vitro selection of allosteric ribozymes: theory and experimental validation. J. Mol. Biol. 312:1177–1190.

    Article  CAS  Google Scholar 

  50. Srinivasan, J., Cload, S.T., Hamaguchi, N., Kurz, J., Keene, S., Kurz, M., Boomer, R.M., Blanchard, J., Epstein, D., Wilson, C. and Diener, J.L. (2004) ADP-specific sensors enable universal assay of protein kinase activity. Chem. Biol. 11:499–508.

    Article  CAS  Google Scholar 

  51. Ferguson, A., Boomer, R.M., Kurz, M., Keene, S.C., Diener, J.L., Keefe, A.D., Wilson, C. and Cload, S.T. (2004) A novel strategy for selection of allosteric ribozymes yields RiboReporter sensors for caffeine and aspartame. Nucleic Acids Res. 32:1756–1766.

    Article  CAS  Google Scholar 

  52. Hartig, J.S., Najafi-Shoushtari, S.H., Grüne, I., Yan, A., Ellington, A.D. and Famulok, M. (2002) Protein-dependent ribozymes report molecular interactions in real time. Nat. Biotechnol. 20:717–722.

    Article  CAS  Google Scholar 

  53. Tyagi, S. and Kramer, F.R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14:303–308.

    Article  CAS  Google Scholar 

  54. Stojanovic, M.N., de Prada, P. and Landry, D.W. (2001) Catalytic molecular beacons. ChemBioChem 2:411–415.

    Article  CAS  Google Scholar 

  55. Stojanovic, M.N. and Stefanovic, D. (2003) Deoxyribozyme-based half adder. J. Am. Chem. Soc. 125:6673–6676.

    Article  CAS  Google Scholar 

  56. Stojanovic, M.N., Mitchell, T.E. and Stefanovic, D. (2002) Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 124:3555–3561.

    Article  CAS  Google Scholar 

  57. Lederman, H., Macdonald, J., Stefanovic, D. and Stojanovic, M.N. (2006) Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. Biochemistry 45: 1194–1199.

    Article  CAS  Google Scholar 

  58. Stojanovic, M.N. and Stefanovic, D. (2003) A deoxyribozyme-based molecular automaton. Nat. Biotechnol. 21:1069–1074.

    Article  CAS  Google Scholar 

  59. Macdonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews, B.L., Stefanovic, D. and Stojanovic, M.N. (2006) Medium scale integration of molecular logic gates in an automaton. Nano Lett. 6:2598–2603.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, Canada Foundation for Innovation, Canada Research Chairs Program, Ontario Innovation Trust, and Ontario Premier Research Excellence Award Program for research support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chiuman, W., Li, Y. (2009). Fluorescent Ribozyme and Deoxyribozyme Sensors. In: Yingfu, L., Yi, L. (eds) Functional Nucleic Acids for Analytical Applications. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73711-9_5

Download citation

Publish with us

Policies and ethics