Advertisement

Natural Functional Nucleic Acids: Ribozymes and Riboswitches

  • Renaud Tremblay
  • Jérôme Mulhbacher
  • Simon Blouin
  • J. Carlos Penedo
  • Daniel A. Lafontaine
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

Natural functional nucleic acids are of primary importance in most cellular processes. Although artificial RNA motifs with functional properties can routinely be generated in research laboratories, the efficiency of their naturally occurring counterparts is hardly matched. Natural ribozymes and riboswitches are examples of Nature's prowess at creating exceedingly good catalysts and ligand-sensing aptamers. This review focuses on natural ribozymes and riboswitches and attempts to highlight how RNA can rival proteins when it comes to show off its capabilities.

Keywords

Fluorescence Resonance Energy Transfer Hepatitis Delta Virus Hammerhead Ribozyme Loop Interaction Tertiary Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nissen, P., Hansen, J., Ban, N., Moore, P.B. and Steitz, T.A. (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930.CrossRefGoogle Scholar
  2. 2.
    Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E. and Cech, T.R. (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157.CrossRefGoogle Scholar
  3. 3.
    Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. and Altman, S. (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857.CrossRefGoogle Scholar
  4. 4.
    Gelfand, M.S., Mironov, A.A., Jomantas, J., Kozlov, Y.I. and Perumov, D.A. (1999) A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet. 15:439–442.CrossRefGoogle Scholar
  5. 5.
    Nou, X. and Kadner, R.J. (2000) Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc. Natl. Acad. Sci. USA 97:7190–7195.CrossRefGoogle Scholar
  6. 6.
    Miranda-Rios, J., Navarro, M. and Soberon, M. (2001) A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Proc. Natl. Acad. Sci. USA 98:9736–9741.CrossRefGoogle Scholar
  7. 7.
    Stormo, G.D. and Ji, Y. (2001) Do mRNAs act as direct sensors of small molecules to control their expression? Proc. Natl. Acad. Sci. USA 98:9465–9467.CrossRefGoogle Scholar
  8. 8.
    Miranda-Rios, J. (2007) The THI-box riboswitch, or how RNA binds thiamin pyrophosphate. Structure 15:259–265.CrossRefGoogle Scholar
  9. 9.
    Mandal, M., Boese, B., Barrick, J.E., Winkler, W.C. and Breaker, R.R. (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilisand other bacteria. Cell 113:577–586.CrossRefGoogle Scholar
  10. 10.
    Wilson, D.S. and Szostak, J.W. (1999) In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68:611–647.CrossRefGoogle Scholar
  11. 11.
    Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510.CrossRefGoogle Scholar
  12. 12.
    Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346:818–822.CrossRefGoogle Scholar
  13. 13.
    Walter, N.G. and Engelke, D.R. (2002) Ribozymes: catalytic RNAs that cut things, make things, and do odd and useful jobs. Biologist (Lond.) 49:199–203.Google Scholar
  14. 14.
    Breaker, R.R. (2004) Natural and engineered nucleic acids as tools to explore biology. Nature (Lond.) 432:838–845.CrossRefGoogle Scholar
  15. 15.
    Breaker, R.R. (2002) Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13:31–39.CrossRefGoogle Scholar
  16. 16.
    Silverman, S.K. (2003) Rube Goldberg goes (ribo)nuclear? Molecular switches and sensors made from RNA. RNA 9:377–383.CrossRefGoogle Scholar
  17. 17.
    Golden, B.L., Gooding, A.R., Podell, E.R. and Cech, T.R. (1998) A preorganized active site in the crystal structure of the Tetrahymenaribozyme. Science 282:259–264.CrossRefGoogle Scholar
  18. 18.
    Adams, P.L., Stahley, M.R., Kosek, A.B., Wang, J. and Strobel, S.A. (2004) Crystal structure of a self-splicing group I intron with both exons. Nature (Lond.) 430:45–50.CrossRefGoogle Scholar
  19. 19.
    Guo, F., Gooding, A.R. and Cech, T.R. (2004) Structure of the Tetrahymenaribozyme: base triple sandwich and metal ion at the active site. Mol. Cell 16:351–362.Google Scholar
  20. 20.
    Golden, B.L., Kim, H. and Chase, E. (2005) Crystal structure of a phage Twort group I ribozyme-product complex. Nat. Struct. Mol. Biol. 12:82–89.CrossRefGoogle Scholar
  21. 21.
    Lilley, D.M. (2005) Structure, folding and mechanisms of ribozymes. Curr. Opin. Struct. Biol. 15:313–323.CrossRefGoogle Scholar
  22. 22.
    Michel, F., Hanna, M., Green, R., Bartel, D.P. and Szostak, J.W. (1989) The guanosine binding site of the Tetrahymenaribozyme. Nature (Lond.) 342:391–395.CrossRefGoogle Scholar
  23. 23.
    Bass, B.L. and Cech, T.R. (1984) Specific interaction between the self-splicing RNA of Tetrahymenaand its guanosine substrate: implications for biological catalysis by RNA. Nature (Lond.) 308:820–826.CrossRefGoogle Scholar
  24. 24.
    Torres-Larios, A., Swinger, K.K., Pan, T. and Mondragon, A. (2006) Structure of ribonuclease P: a universal ribozyme. Curr. Opin. Struct. Biol. 16:327–335.CrossRefGoogle Scholar
  25. 25.
    Kazantsev, A.V. and Pace, N.R. (2006) Bacterial RNase P: a new view of an ancient enzyme. Nat. Rev. Microbiol. 4:729–740.CrossRefGoogle Scholar
  26. 26.
    Kazantsev, A.V., Krivenko, A.A., Harrington, D.J., Holbrook, S.R., Adams, P.D. and Pace, N.R. (2005) Crystal structure of a bacterial ribonuclease P RNA. Proc. Natl. Acad. Sci. USA 102:13392–13397.CrossRefGoogle Scholar
  27. 27.
    Kikovska, E., Svard, S.G. and Kirsebom, L.A. (2007) Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc. Natl. Acad. Sci. USA 104:2062–2067.CrossRefGoogle Scholar
  28. 28.
    Krasilnikov, A.S., Yang, X., Pan, T. and Mondragon, A. (2003) Crystal structure of the specificity domain of ribonuclease P. Nature (Lond.) 421:760–764.CrossRefGoogle Scholar
  29. 29.
    Krasilnikov, A.S., Xiao, Y., Pan, T. and Mondragon, A. (2004) Basis for structural diversity in homologous RNAs. Science 306:104–107.CrossRefGoogle Scholar
  30. 30.
    Torres-Larios, A., Swinger, K.K., Krasilnikov, A.S., Pan, T. and Mondragon, A. (2005) Crystal structure of the RNA component of bacterial ribonuclease P. Nature (Lond.) 437:584–587.CrossRefGoogle Scholar
  31. 31.
    Pley, H.W., Flaherty, K.M. and McKay, D.B. (1994) Three-dimensional structure of a hammerhead ribozyme. Nature (Lond.) 372:68–74.CrossRefGoogle Scholar
  32. 32.
    Scott, W.G., Finch, J.T. and Klug, A. (1995) The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81:991–1002.CrossRefGoogle Scholar
  33. 33.
    Ferre-D'Amare, A.R., Zhou, K. and Doudna, J.A. (1998) Crystal structure of a hepatitis delta virus ribozyme. Nature (Lond.) 395:567–574.CrossRefGoogle Scholar
  34. 34.
    Rupert, P.B. and Ferre-D'Amare, A.R. (2001) Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature (Lond.) 410:780–786.CrossRefGoogle Scholar
  35. 35.
    Klein, D.J. and Ferre-D'Amare, A.R. (2006) Structural basis of glmSribozyme activation by glucosamine-6-phosphate. Science 313:1752–1756.CrossRefGoogle Scholar
  36. 36.
    Martick, M. and Scott, W.G. (2006) Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126:309–320.CrossRefGoogle Scholar
  37. 37.
    Cochrane, J.C., Lipchock, S.V. and Strobel, S.A. (2007) Structural investigation of the GlmS ribozyme bound to its catalytic cofactor. Chem. Biol. 14:97–105.CrossRefGoogle Scholar
  38. 38.
    Lafontaine, D.A., Norman, D.G. and Lilley, D.M. (2001) Structure, folding and activity of the VS ribozyme: importance of the 2–3–6 helical junction. EMBO J. 20:1415–1424.CrossRefGoogle Scholar
  39. 39.
    Lafontaine, D.A., Norman, D.G. and Lilley, D.M. (2002) The global structure of the VS ribozyme. EMBO J. 21:2461–2471.CrossRefGoogle Scholar
  40. 40.
    Murray, J.B., Seyhan, A.A., Walter, N.G., Burke, J.M. and Scott, W.G. (1998) The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem. Biol. 5:587–595.CrossRefGoogle Scholar
  41. 41.
    Bevilacqua, P.C. and Yajima, R. (2006) Nucleobase catalysis in ribozyme mechanism. Curr. Opin. Chem. Biol. 10:455–464.CrossRefGoogle Scholar
  42. 42.
    Teixeira, A., Tahiri-Alaoui, A., West, S., Thomas, B., Ramadass, A., Martianov, I., Dye, M., James, W., Proudfoot, N.J. and Akoulitchev, A. (2004) Autocatalytic RNA cleavage in the human beta-globin pre-mRNA promotes transcription termination. Nature (Lond.) 432:526–530.CrossRefGoogle Scholar
  43. 43.
    Santiago, F.S. and Khachigian, L.M. (2001) Nucleic acid based strategies as potential therapeutic tools: mechanistic considerations and implications to restenosis. J. Mol. Med. 79:695–706.CrossRefGoogle Scholar
  44. 44.
    Ban, N., Nissen, P., Hansen, J., Moore, P.B. and Steitz, T.A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–920.CrossRefGoogle Scholar
  45. 45.
    Zhang, B. and Cech, T.R. (1997) Peptide bond formation by in vitro selected ribozymes. Nature (Lond.) 390:96–100.CrossRefGoogle Scholar
  46. 46.
    Blanchard, S.C., Gonzalez, R.L., Kim, H.D., Chu, S. and Puglisi, J.D. (2004) tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11:1008–1014.CrossRefGoogle Scholar
  47. 47.
    Blanchard, S.C., Kim, H.D., Gonzalez, R.L., Jr., Puglisi, J.D. and Chu, S. (2004) tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101:12893–12898.CrossRefGoogle Scholar
  48. 48.
    Bevilacqua, P.C., Brown, T.S., Nakano, S. and Yajima, R. (2004) Catalytic roles for proton transfer and protonation in ribozymes. Biopolymers 73:90–109.CrossRefGoogle Scholar
  49. 49.
    Doudna, J.A. and Lorsch, J.R. (2005) Ribozyme catalysis: not different, just worse. Nat. Struct. Mol. Biol. 12:395–402.CrossRefGoogle Scholar
  50. 50.
    Fedor, M.J. (2002) The role of metal ions in RNA catalysis. Curr. Opin. Struct. Biol. 12:289–295.CrossRefGoogle Scholar
  51. 51.
    Fedor, M.J. and Williamson, J.R. (2005) The catalytic diversity of RNAs. Nat. Rev. Mol. Cell. Biol. 6:399–412.CrossRefGoogle Scholar
  52. 52.
    Holbrook, S.R. (2005) RNA structure: the long and the short of it. Curr. Opin. Struct. Biol. 15:302–308.CrossRefGoogle Scholar
  53. 53.
    Lonnberg, T. and Lonnberg, H. (2005) Chemical models for ribozyme action. Curr. Opin. Chem. Biol. 9:665–673.CrossRefGoogle Scholar
  54. 54.
    Woodson, S.A. (2005) Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr. Opin. Chem. Biol. 9:104–109.CrossRefGoogle Scholar
  55. 55.
    Symons, R.H. (1992) Small catalytic RNAs. Annu. Rev. Biochem. 61:641–671.CrossRefGoogle Scholar
  56. 56.
    Blount, K.F. and Uhlenbeck, O.C. (2005) The structure–function dilemma of the hammerhead ribozyme. Annu. Rev. Biophys. Biomol. Struct. 34:415–440.CrossRefGoogle Scholar
  57. 57.
    Stage-Zimmermann, T.K. and Uhlenbeck, O.C. (1998) Hammerhead ribozyme kinetics. RNA 4:875–889.CrossRefGoogle Scholar
  58. 58.
    Hertel, K.J., Herschlag, D. and Uhlenbeck, O.C. (1994) A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 33:3374–3385.CrossRefGoogle Scholar
  59. 59.
    Hertel, K.J. and Uhlenbeck, O.C. (1995) The internal equilibrium of the hammerhead ribozyme reaction. Biochemistry 34:1744–1749.CrossRefGoogle Scholar
  60. 60.
    Uhlenbeck, O.C. (2003) Less isn't always more. RNA 9:1415–1417.CrossRefGoogle Scholar
  61. 61.
    Lilley, D.M. (2003) Ribozymes — a snip too far? Nat. Struct. Biol. 10:672–673.CrossRefGoogle Scholar
  62. 62.
    Amiri, K.M. and Hagerman, P.J. (1994) Global conformation of a self-cleaving hammerhead RNA. Biochemistry 33:13172–13177.CrossRefGoogle Scholar
  63. 63.
    Bassi, G.S., Mollegaard, N.E., Murchie, A.I., von Kitzing, E. and Lilley, D.M. (1995) Ionic interactions and the global conformations of the hammerhead ribozyme. Nat. Struct. Biol. 2:45–55.CrossRefGoogle Scholar
  64. 64.
    Tuschl, T., Gohlke, C., Jovin, T.M., Westhof, E. and Eckstein, F. (1994) A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266:785–789.CrossRefGoogle Scholar
  65. 65.
    Bassi, G.S., Murchie, A.I., Walter, F., Clegg, R.M. and Lilley, D.M. (1997) Ion-induced folding of the hammerhead ribozyme: a fluorescence resonance energy transfer study. EMBO J. 16:7481–7489.CrossRefGoogle Scholar
  66. 66.
    Rueda, D., Wick, K., McDowell, S.E. and Walter, N.G. (2003) Diffusely bound Mg2+ ions slightly reorient stems I and II of the hammerhead ribozyme to increase the probability of formation of the catalytic core. Biochemistry 42:9924–9936.CrossRefGoogle Scholar
  67. 67.
    Menger, M., Eckstein, F. and Porschke, D. (2000) Multiple conformational states of the hammerhead ribozyme, broad time range of relaxation and topology of dynamics. Nucleic Acids Res. 28:4428–4434.CrossRefGoogle Scholar
  68. 68.
    Menger, M., Tuschl, T., Eckstein, F. and Porschke, D. (1996) Mg(2+)-dependent conforma-tional changes in the hammerhead ribozyme. Biochemistry 35:14710–14716.CrossRefGoogle Scholar
  69. 69.
    Peracchi, A., Beigelman, L., Usman, N. and Herschlag, D. (1996) Rescue of abasic hammerhead ribozymes by exogenous addition of specific bases. Proc. Natl. Acad. Sci. USA 93:11522–11527.CrossRefGoogle Scholar
  70. 70.
    Woisard, A., Fourrey, J.L. and Favre, A. (1994) Multiple folded conformations of a hammerhead ribozyme domain under cleavage conditions. J. Mol. Biol. 239:366–370.CrossRefGoogle Scholar
  71. 71.
    Sigurdsson, S.T., Tuschl, T. and Eckstein, F. (1995) Probing RNA tertiary structure: interheli-cal crosslinking of the hammerhead ribozyme. RNA 1:575–583.Google Scholar
  72. 72.
    Wang, L. and Ruffner, D.E. (1997) An ultraviolet crosslink in the hammerhead ribozyme dependent on 2-thiocytidine or 4-thiouridine substitution. Nucleic Acids Res. 25:4355–4361.CrossRefGoogle Scholar
  73. 73.
    Heckman, J.E., Lambert, D. and Burke, J.M. (2005) Photocrosslinking detects a compact, active structure of the hammerhead ribozyme. Biochemistry 44:4148–4156.CrossRefGoogle Scholar
  74. 74.
    Simorre, J.P., Legault, P., Hangar, A.B., Michiels, P. and Pardi, A. (1997) A conformational change in the catalytic core of the hammerhead ribozyme upon cleavage of an RNA substrate. Biochemistry 36:518–525.CrossRefGoogle Scholar
  75. 75.
    Suzumura, K., Warashina, M., Yoshinari, K., Tanaka, Y., Kuwabara, T., Orita, M. and Taira, K. (2000) Significant change in the structure of a ribozyme upon introduction of a phospho-rothioate linkage at P9: NMR reveals a conformational fluctuation in the core region of a hammerhead ribozyme. FEBS Lett. 473:106–112.CrossRefGoogle Scholar
  76. 76.
    Bondensgaard, K., Mollova, E.T. and Pardi, A. (2002) The global conformation of the hammerhead ribozyme determined using residual dipolar couplings. Biochemistry 41:11532–11542.CrossRefGoogle Scholar
  77. 77.
    Hammann, C. and Lilley, D.M.J. (2002) Folding and activity of the hammerhead ribozyme. ChemBioChem 3:690–700.CrossRefGoogle Scholar
  78. 78.
    Khvorova, A., Lescoute, A., Westhof, E. and Jayasena, S.D. (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat. Struct. Biol. 10:708–712.CrossRefGoogle Scholar
  79. 79.
    De la Pena, M., Gago, S. and Flores, R. (2003) Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO J. 22:5561–5570.CrossRefGoogle Scholar
  80. 80.
    Canny, M.D., Jucker, F.M., Kellogg, E., Khvorova, A., Jayasena, S.D. and Pardi, A. (2004) Fast cleavage kinetics of a natural hammerhead ribozyme. J. Am. Chem. Soc. 126:10848–10849.CrossRefGoogle Scholar
  81. 81.
    Penedo, J.C., Wilson, T.J., Jayasena, S.D., Khvorova, A. and Lilley, D.M. (2004) Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements. RNA 10:880–888.CrossRefGoogle Scholar
  82. 82.
    Kim, N.K., Murali, A. and DeRose, V.J. (2005) Separate metal requirements for loop interactions and catalysis in the extended hammerhead ribozyme. J. Am. Chem. Soc. 127:14134–14135.CrossRefGoogle Scholar
  83. 83.
    Osborne, E.M., Schaak, J.E. and Derose, V.J. (2005) Characterization of a native hammerhead ribozyme derived from schistosomes. RNA 11:187–196.CrossRefGoogle Scholar
  84. 84.
    Ferbeyre, G., Smith, J.M. and Cedergren, R. (1998) Schistosome satellite DNA encodes active hammerhead ribozymes. Mol. Cell. Biol. 18:3880–3888.Google Scholar
  85. 85.
    Nelson, J.A. and Uhlenbeck, O.C. (2006) When to believe what you see. Mol. Cell. 23:447–450.CrossRefGoogle Scholar
  86. 86.
    Han, J. and Burke, J.M. (2005) Model for general acid–base catalysis by the hammerhead ribozyme: pH—activity relationships of G8 and G12 variants at the putative active site. Biochemistry 44:7864–7870.CrossRefGoogle Scholar
  87. 87.
    Berzal-Herranz, A., Joseph, S., Chowrira, B.M., Butcher, S.E. and Burke, J.M. (1993) Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J. 12:2567–2573.Google Scholar
  88. 88.
    Murchie, A.I., Thomson, J.B., Walter, F. and Lilley, D.M. (1998) Folding of the hairpin ribozyme in its natural conformation achieves close physical proximity of the loops. Mol. Cell 1:873–881.CrossRefGoogle Scholar
  89. 89.
    Zhao, Z.Y., Wilson, T.J., Maxwell, K. and Lilley, D.M. (2000) The folding of the hairpin ribozyme: dependence on the loops and the junction. RNA 6:1833–1846.CrossRefGoogle Scholar
  90. 90.
    Walter, N.G., Burke, J.M. and Millar, D.P. (1999) Stability of hairpin ribozyme tertiary structure is governed by the interdomain junction. Nat. Struct. Biol. 6:544–549.CrossRefGoogle Scholar
  91. 91.
    Tan, E., Wilson, T.J., Nahas, M.K., Clegg, R.M., Lilley, D.M. and Ha, T. (2003) A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proc. Natl. Acad. Sci. USA 100:9308–9313.CrossRefGoogle Scholar
  92. 92.
    Kennell, J.C., Saville, B.J., Mohr, S., Kuiper, M.T., Sabourin, J.R., Collins, R.A. and Lambowitz, A.M. (1995) The VS catalytic RNA replicates by reverse transcription as a satellite of a retroplasmid. Genes Dev. 9:294–303.CrossRefGoogle Scholar
  93. 93.
    Guo, H.C. and Collins, R.A. (1995) Efficient trans-cleavage of a stem-loop RNA substrate by a ribozyme derived from neurospora VS RNA. EMBO J. 14:368–376.Google Scholar
  94. 94.
    Andersen, A.A. and Collins, R.A. (2000) Rearrangement of a stable RNA secondary structure during VS ribozyme catalysis. Mol. Cell 5:469–478.CrossRefGoogle Scholar
  95. 95.
    Collins, R.A. (2002) The Neurospora Varkud satellite ribozyme. Biochem. Soc. Trans. 30:1122–1126.CrossRefGoogle Scholar
  96. 96.
    Lilley, D.M. (2004) The Varkud satellite ribozyme. RNA 10:151–158.CrossRefGoogle Scholar
  97. 97.
    Michiels, P.J., Schouten, C.H., Hilbers, C.W. and Heus, H.A. (2000) Structure of the ribozyme substrate hairpin of NeurosporaVS RNA: a close look at the cleavage site. RNA 6:1821–1832.CrossRefGoogle Scholar
  98. 98.
    Flinders, J. and Dieckmann, T. (2001) A pH controlled conformational switch in the cleavage site of the VS ribozyme substrate RNA. J. Mol. Biol. 308:665–679.CrossRefGoogle Scholar
  99. 99.
    Hoffmann, B., Mitchell, G.T., Gendron, P., Major, F., Andersen, A.A., Collins, R.A. and Legault, P. (2003) NMR structure of the active conformation of the Varkud satellite ribozyme cleavage site. Proc. Natl. Acad. Sci. USA 100:7003–7008.CrossRefGoogle Scholar
  100. 100.
    Beattie, T.L., Olive, J.E. and Collins, R.A. (1995) A secondary-structure model for the self-cleaving region of Neurospora VS RNA. Proc. Natl. Acad. Sci. USA 92:4686–4690.CrossRefGoogle Scholar
  101. 101.
    Beattie, T.L. and Collins, R.A. (1997) Identification of functional domains in the self-cleaving Neurospora VS ribozyme using damage selection. J. Mol. Biol. 267:830–840.CrossRefGoogle Scholar
  102. 102.
    Sood, V.D., Beattie, T.L. and Collins, R.A. (1998) Identification of phosphate groups involved in metal binding and tertiary interactions in the core of the Neurospora VS ribozyme. J. Mol. Biol. 282:741–750.CrossRefGoogle Scholar
  103. 103.
    Rastogi, T. and Collins, R.A. (1998) Smaller, faster ribozymes reveal the catalytic core of Neurospora VS RNA. J. Mol. Biol. 277:215–224.CrossRefGoogle Scholar
  104. 104.
    Lafontaine, D.A., Wilson, T.J., Norman, D.G. and Lilley, D.M. (2001) The A730 loop is an important component of the active site of the VS ribozyme. J. Mol. Biol. 312:663–674.CrossRefGoogle Scholar
  105. 105.
    Hiley, S.L. and Collins, R.A. (2001) Rapid formation of a solvent-inaccessible core in the Neurospora Varkud satellite ribozyme. EMBO J. 20:5461–5469.CrossRefGoogle Scholar
  106. 106.
    Sood, V.D., Yekta, S. and Collins, R.A. (2002) The contribution of 2′-hydroxyls to the cleavage activity of the Neurospora VS ribozyme. Nucleic Acids Res. 30:1132–1138.CrossRefGoogle Scholar
  107. 107.
    Jones, F.D. and Strobel, S.A. (2003) Ionization of a critical adenosine residue in the Neurospora Varkud Satellite ribozyme active site. Biochemistry 42:4265–4276.CrossRefGoogle Scholar
  108. 108.
    Lafontaine, D.A., Wilson, T.J., Zhao, Z.Y. and Lilley, D.M. (2002) Functional group requirements in the probable active site of the VS ribozyme. J. Mol. Biol. 323:23–34.CrossRefGoogle Scholar
  109. 109.
    Sood, V.D. and Collins, R.A. (2002) Identification of the catalytic subdomain of the VS ribozyme and evidence for remarkable sequence tolerance in the active site loop. J. Mol. Biol. 320:443–454.CrossRefGoogle Scholar
  110. 110.
    McLeod, A.C. and Lilley, D.M. (2004) Efficient, pH-dependent RNA ligation by the VS ribozyme in trans. Biochemistry 43:1118–1125.CrossRefGoogle Scholar
  111. 111.
    Hiley, S.L., Sood, V.D., Fan, J. and Collins, R.A. (2002) 4-thio-U cross-linking identifies the active site of the VS ribozyme. EMBO J. 21:4691–4698.CrossRefGoogle Scholar
  112. 112.
    Smith, M.D. and Collins, R.A. (2007) Evidence for proton transfer in the rate-limiting step of a fast-cleaving Varkud satellite ribozyme. Proc. Natl. Acad. Sci. USA 104:5818–5823.CrossRefGoogle Scholar
  113. 113.
    Zhao, Z.Y., McLeod, A., Harusawa, S., Araki, L., Yamaguchi, M., Kurihara, T. and Lilley, D.M. (2005) Nucleobase participation in ribozyme catalysis. J. Am. Chem. Soc. 127:5026–5027.CrossRefGoogle Scholar
  114. 114.
    Perrotta, A.T., Shih, I. and Been, M.D. (1999) Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science 286:123–126.CrossRefGoogle Scholar
  115. 115.
    Mooney, R.A., Artsimovitch, I. and Landick, R. (1998) Information processing by RNA polymerase: recognition of regulatory signals during RNA chain elongation. J. Bacteriol. 180:3265–3275.Google Scholar
  116. 116.
    Stulke, J. (2002) Control of transcription termination in bacteria by RNA-binding proteins that modulate RNA structures. Arch. Microbiol. 177:433–440.CrossRefGoogle Scholar
  117. 117.
    Gollnick, P. and Babitzke, P. (2002) Transcription attenuation. Biochim. Biophys. Acta 1577:240–250.Google Scholar
  118. 118.
    Condon, C. (2003) RNA processing and degradation in Bacillus subtilis. Microbiol. Mol. Biol. Rev. 67:157–174.CrossRefGoogle Scholar
  119. 119.
    Copeland, P.R. (2003) Regulation of gene expression by stop codon recoding: selenocysteine. Gene (Amsterdam) 312:17–25.Google Scholar
  120. 120.
    Browning, D.F. and Busby, S.J. (2004) The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2:57–65.CrossRefGoogle Scholar
  121. 121.
    Babitzke, P. (2004) Regulation of transcription attenuation and translation initiation by allosteric control of an RNA-binding protein: the Bacillus subtilisTRAP protein. Curr. Opin. Microbiol. 7:132–139.CrossRefGoogle Scholar
  122. 122.
    Storz, G., Opdyke, J.A. and Zhang, A. (2004) Controlling mRNA stability and translation with small, noncoding RNAs. Curr. Opin. Microbiol. 7:140–144.CrossRefGoogle Scholar
  123. 123.
    Winkler, W.C., Nahvi, A., Roth, A., Collins, J.A. and Breaker, R.R. (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature (Lond.) 428:281–286.CrossRefGoogle Scholar
  124. 124.
    Gottesman, S. (2004) The small RNA regulators of Escherichia coli: roles and mechanisms. Annu. Rev. Microbiol. 58:303–328.CrossRefGoogle Scholar
  125. 125.
    McManus, M.T. and Sharp, P.A. (2002) Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3:737–747.CrossRefGoogle Scholar
  126. 126.
    Carrington, J.C. and Ambros, V. (2003) Role of microRNAs in plant and animal development. Science 301:336–338.CrossRefGoogle Scholar
  127. 127.
    Winkler, W.C. (2005) Metabolic monitoring by bacterial mRNAs. Arch. Microbiol. 183:151–159.CrossRefGoogle Scholar
  128. 128.
    Mandal, M. and Breaker, R.R. (2004) Gene regulation by riboswitches. Nat. Rev. Mol. Cell. Biol. 5:451–463.CrossRefGoogle Scholar
  129. 129.
    Nudler, E. and Mironov, A.S. (2004) The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29:11–17.CrossRefGoogle Scholar
  130. 130.
    Grundy, F.J. and Henkin, T.M. (2004) Regulation of gene expression by effectors that bind to RNA. Curr. Opin. Microbiol. 7:126–131.CrossRefGoogle Scholar
  131. 131.
    Christiansen, L.C., Schou, S., Nygaard, P. and Saxild, H.H. (1997) Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. J. Bacteriol. 179:2540–2550.Google Scholar
  132. 132.
    Mandal, M. and Breaker, R.R. (2004) Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat. Struct. Mol. Biol. 11:29–35.CrossRefGoogle Scholar
  133. 133.
    Nahvi, A., Sudarsan, N., Ebert, M.S., Zou, X., Brown, K.L. and Breaker, R.R. (2002) Genetic control by a metabolite binding mRNA. Chem. Biol. 9:1043.CrossRefGoogle Scholar
  134. 134.
    Mironov, A.S., Gusarov, I., Rafikov, R., Lopez, L.E., Shatalin, K., Kreneva, R.A., Perumov, D.A. and Nudler, E. (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111:747–756.CrossRefGoogle Scholar
  135. 135.
    Winkler, W.C., Cohen-Chalamish, S. and Breaker, R.R. (2002) An mRNA structure that controls gene expression by binding FMN. Proc. Natl. Acad. Sci. USA 99:15908–15913.CrossRefGoogle Scholar
  136. 136.
    Mandal, M., Lee, M., Barrick, J.E., Weinberg, Z., Emilsson, G.M., Ruzzo, W.L. and Breaker, R.R. (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306:275–279.CrossRefGoogle Scholar
  137. 137.
    Grundy, F.J., Lehman, S.C. and Henkin, T.M. (2003) The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc. Natl. Acad. Sci. USA 100:12057–12062.CrossRefGoogle Scholar
  138. 138.
    Sudarsan, N., Wickiser, J.K., Nakamura, S., Ebert, M.S. and Breaker, R.R. (2003) An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. 17:2688–2697.CrossRefGoogle Scholar
  139. 139.
    Epshtein, V., Mironov, A.S. and Nudler, E. (2003) The riboswitch-mediated control of sulfur metabolism in bacteria. Proc. Natl. Acad. Sci. USA 100:5052–5056.CrossRefGoogle Scholar
  140. 140.
    Grundy, F.J. and Henkin, T.M. (1998) The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Mol. Microbiol. 30:737–749.CrossRefGoogle Scholar
  141. 141.
    Winkler, W.C., Nahvi, A., Sudarsan, N., Barrick, J.E. and Breaker, R.R. (2003) An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat. Struct. Biol. 10:701–707.CrossRefGoogle Scholar
  142. 142.
    McDaniel, B.A., Grundy, F.J., Artsimovitch, I. and Henkin, T.M. (2003) Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc. Natl. Acad. Sci. USA 100:3083–3088.CrossRefGoogle Scholar
  143. 143.
    Winkler, W., Nahvi, A. and Breaker, R.R. (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature (Lond.) 419:952–956.CrossRefGoogle Scholar
  144. 144.
    Sudarsan, N., Hammond, M.C., Block, K.F., Welz, R., Barrick, J.E., Roth, A. and Breaker, R.R. (2006) Tandem riboswitch architectures exhibit complex gene control functions. Science 314:300–304.CrossRefGoogle Scholar
  145. 145.
    Banerjee, R.V., Frasca, V., Ballou, D.P. and Matthews, R.G. (1990) Participation of cob(I) alamin in the reaction catalyzed by methionine synthase from Escherichia coli: a steady-state and rapid reaction kinetic analysis. Biochemistry 29:11101–11109.CrossRefGoogle Scholar
  146. 146.
    Gonzalez, J.C., Peariso, K., Penner-Hahn, J.E. and Matthews, R.G. (1996) Cobalamin-independent methionine synthase from Escherichia coli: a zinc metalloenzyme. Biochemistry 35:12228–12234.CrossRefGoogle Scholar
  147. 147.
    Vicens, Q. and Westhof, E. (2003) RNA as a drug target: the case of aminoglycosides. ChemBioChem 4:1018–1023.CrossRefGoogle Scholar
  148. 148.
    Blount, K.F., Wang, J.X., Lim, J., Sudarsan, N. and Breaker, R.R. (2007) Antibacterial lysine analogs that target lysine riboswitches. Nat. Chem. Biol. 3:44–49.CrossRefGoogle Scholar
  149. 149.
    Shiota, T., Folk, J.E. and Tietze, F. (1958) Inhibition of lysine utilization in bacteria by S-(beta-aminoethyl) cysteine and its reversal by lysine peptides. Arch. Biochem. Biophys. 77:372–377.CrossRefGoogle Scholar
  150. 150.
    Batey, R.T., Gilbert, S.D. and Montange, R.K. (2004) Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature (Lond.) 432:411–415.CrossRefGoogle Scholar
  151. 151.
    Serganov, A., Yuan, Y.R., Pikovskaya, O., Polonskaia, A., Malinina, L., Phan, A.T., Hobartner, C., Micura, R., Breaker, R.R. and Patel, D.J. (2004) Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11:1729–1741.CrossRefGoogle Scholar
  152. 152.
    Soukup, G.A. and Breaker, R.R. (1999) Relationship between internucleotide linkage geometry and the stability of RNA. RNA 5:1308–1325.CrossRefGoogle Scholar
  153. 153.
    Winkler, W.C. and Breaker, R.R. (2003) Genetic control by metabolite-binding riboswitches. ChemBioChem 4:1024–1032.CrossRefGoogle Scholar
  154. 154.
    Lemay, J.F., Penedo, J.C., Tremblay, R., Lilley, D.M. and Lafontaine, D.A. (2006) Folding of the adenine riboswitch. Chem. Biol. 13:857–868.CrossRefGoogle Scholar
  155. 155.
    Lemay, J.F. and Lafontaine, D.A. (2007) Core requirements of the adenine riboswitch aptamer for ligand binding. RNA 13:339–350.CrossRefGoogle Scholar
  156. 156.
    Frankel, A.D. (1999) If the loop fits. Nat. Struct. Biol. 6:1081–1083.CrossRefGoogle Scholar
  157. 157.
    Williamson, J.R. (2000) Induced fit in RNA—protein recognition. Nat. Struct. Biol. 7:834–837.CrossRefGoogle Scholar
  158. 158.
    Gilbert, S.D., Mediatore, S.J. and Batey, R.T. (2006) Modified pyrimidines specifically bind the purine riboswitch. J. Am. Chem. Soc. 128:14214–14215.CrossRefGoogle Scholar
  159. 159.
    Gilbert, S.D., Stoddard, C.D., Wise, S.J. and Batey, R.T. (2006) Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. J. Mol. Biol. 359:754–768.CrossRefGoogle Scholar
  160. 160.
    Lescoute, A. and Westhof, E. (2005) Riboswitch structures: purine ligands replace tertiary contacts. Chem. Biol. 12:10–13.CrossRefGoogle Scholar
  161. 161.
    Wickiser, J.K., Cheah, M.T., Breaker, R.R. and Crothers, D.M. (2005) The kinetics of ligand binding by an adenine-sensing riboswitch. Biochemistry 44:13404–13414.CrossRefGoogle Scholar
  162. 162.
    Wickiser, J.K., Winkler, W.C., Breaker, R.R. and Crothers, D.M. (2005) The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol. Cell 18:49–60.CrossRefGoogle Scholar
  163. 163.
    Sassanfar, M. and Szostak, J.W. (1993) An RNA motif that binds ATP. Nature (Lond.) 364:550–553.CrossRefGoogle Scholar
  164. 164.
    Connell, G.J. and Yarus, M. (1994) RNAs with dual specificity and dual RNAs with similar specificity. Science 264:1137–1141.CrossRefGoogle Scholar
  165. 165.
    Jenison, R.D., Gill, S.C., Pardi, A. and Polisky, B. (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429.CrossRefGoogle Scholar
  166. 166.
    Kiga, D., Futamura, Y., Sakamoto, K. and Yokoyama, S. (1998) An RNA aptamer to the xanthine/guanine base with a distinctive mode of purine recognition. Nucleic Acids Res. 26:1755–1760.CrossRefGoogle Scholar
  167. 167.
    McDaniel, B.A., Grundy, F.J. and Henkin, T.M. (2005) A tertiary structural element in S box leader RNAs is required for S-adenosylmethionine-directed transcription termination. Mol. Microbiol. 57:1008–1021.CrossRefGoogle Scholar
  168. 168.
    Lim, J., Winkler, W.C., Nakamura, S., Scott, V. and Breaker, R.R. (2006) Molecular-recognition characteristics of SAM-binding riboswitches. Angew. Chem. Int. Ed. Engl. 45:964–968.CrossRefGoogle Scholar
  169. 169.
    Corbino, K.A., Barrick, J.E., Lim, J., Welz, R., Tucker, B.J., Puskarz, I., Mandal, M., Rudnick, N.D. and Breaker, R.R. (2005) Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol. 6:R70.CrossRefGoogle Scholar
  170. 170.
    Fuchs, R.T., Grundy, F.J. and Henkin, T.M. (2006) The S(MK) box is a new SAM-binding RNA for translational regulation of SAM synthetase. Nat. Struct. Mol. Biol. 13:226–233.CrossRefGoogle Scholar
  171. 171.
    Fuchs, R.T., Grundy, F.J. and Henkin, T.M. (2007) S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA. Proc. Natl. Acad. Sci. USA 104:4876–4880.CrossRefGoogle Scholar
  172. 172.
    Winkler, W.C. and Breaker, R.R. (2005) Regulation of bacterial gene expression by ribos-witches. Annu. Rev. Microbiol. 59:487–517.CrossRefGoogle Scholar
  173. 173.
    Grundy, F.J. and Henkin, T.M. 2002. Synthesis of serine, glycine, cysteine and methionine. American Society for Microbiology Press, Washington, DC.Google Scholar
  174. 174.
    Grundy, F.J. and Henkin, T.M. (2003) The T box and S box transcription termination control systems. Front. Biosci. 8:d20–d31.CrossRefGoogle Scholar
  175. 175.
    Rodionov, D.A., Vitreschak, A.G., Mironov, A.A. and Gelfand, M.S. (2004) Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. Nucleic Acids Res. 32:3340–3353.CrossRefGoogle Scholar
  176. 176.
    Winkler, W.C., Grundy, F.J., Murphy, B.A. and Henkin, T.M. (2001) The GA motif: an RNA element common to bacterial antitermination systems, rRNA, and eukaryotic RNAs. RNA 7:1165–1172.CrossRefGoogle Scholar
  177. 177.
    Klein, D.J., Schmeing, T.M., Moore, P.B. and Steitz, T.A. (2001) The kink-turn: a new RNA secondary structure motif. EMBO J. 20:4214–4221.CrossRefGoogle Scholar
  178. 178.
    Montange, R.K. and Batey, R.T. (2006) Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature (Lond.) 441:1172–1175.CrossRefGoogle Scholar
  179. 179.
    Schubert, H.L., Blumenthal, R.M. and Cheng, X. (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 28:329–335.CrossRefGoogle Scholar
  180. 180.
    Burke, D.H. and Gold, L. (1997) RNA aptamers to the adenosine moiety of S-adenosyl methionine: structural inferences from variations on a theme and the reproducibility of SELEX. Nucleic Acids Res. 25:2020–2024.CrossRefGoogle Scholar
  181. 181.
    Dieckmann, T., Suzuki, E., Nakamura, G.K. and Feigon, J. (1996) Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA 2:628–640.Google Scholar
  182. 182.
    Jiang, F., Fiala, R., Live, D., Kumar, R.A. and Patel, D.J. (1996a) RNA folding topology and intermolecular contacts in the AMP-RNA aptamer complex. Biochemistry 35:13250–13266.CrossRefGoogle Scholar
  183. 183.
    Jiang, F., Kumar, R.A., Jones, R.A. and Patel, D.J. (1996b) Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature (Lond.) 382:183–186.CrossRefGoogle Scholar
  184. 184.
    Sudarsan, N., Barrick, J.E. and Breaker, R.R. (2003a) Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9:644–647.CrossRefGoogle Scholar
  185. 185.
    Goodwin, T.W. (1963) The biosynthesis of vitamins and related compounds. Academic Press, New York.Google Scholar
  186. 186.
    Begley, T.P., Downs, D.M., Ealick, S.E., McLafferty, F.W., Van Loon, A.P., Taylor, S., Campobasso, N., Chiu, H.J., Kinsland, C., Reddick, J.J. and Xi, J. (1999) Thiamin biosynthesis in prokaryotes. Arch. Microbiol. 171:293–300.CrossRefGoogle Scholar
  187. 187.
    Serganov, A., Polonskaia, A., Phan, A.T., Breaker, R.R. and Patel, D.J. (2006) Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature (Lond.) 441:1167–1171.CrossRefGoogle Scholar
  188. 188.
    Thore, S., Leibundgut, M. and Ban, N. (2006) Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science 312:1208–1211.CrossRefGoogle Scholar
  189. 189.
    Nudler, E. (2006) Flipping riboswitches. Cell 126:19–22.CrossRefGoogle Scholar
  190. 190.
    Robbins, W.J. (1941) The pyridine analog of thiamin and the growth of fungi. Proc. Natl. Acad. Sci. USA 27:419–422.CrossRefGoogle Scholar
  191. 191.
    Woolley, D.W. (1951) An enzymatic study of the mode of action of pyrithiamine (neopy-rithiamine). J. Biol. Chem. 191:43–54.Google Scholar
  192. 192.
    Kubodera, T., Watanabe, M., Yoshiuchi, K., Yamashita, N., Nishimura, A., Nakai, S., Gomi, K. and Hanamoto, H. (2003) Thiamine-regulated gene expression of Aspergillus oryzaethiA requires splicing of the intron containing a riboswitch-like domain in the 5′-UTR. FEBS Lett. 555:516–520.CrossRefGoogle Scholar
  193. 193.
    Sudarsan, N., Cohen-Chalamish, S., Nakamura, S., Emilsson, G.M. and Breaker, R.R. (2005) Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithia-mine. Chem. Biol. 12:1325–1335.CrossRefGoogle Scholar
  194. 194.
    Blount, K., Puskarz, I., Penchovsky, R. and Breaker, R. (2006) Development and application of a high-throughput assay for glmS riboswitch activators. RNA Biol. 3:77–81.Google Scholar
  195. 195.
    Hampel, K.J. and Tinsley, M.M. (2006) Evidence for preorganization of the glmS ribozyme ligand binding pocket. Biochemistry 45:7861–7871.CrossRefGoogle Scholar
  196. 196.
    Jansen, J.A., McCarthy, T.J., Soukup, G.A. and Soukup, J.K. (2006) Backbone and nucleo-base contacts to glucosamine-6-phosphate in the glmS ribozyme. Nat. Struct. Mol. Biol. 13:517–523.CrossRefGoogle Scholar
  197. 197.
    Lim, J., Grove, B.C., Roth, A. and Breaker, R.R. (2006) Characteristics of ligand recognition by a glmS self-cleaving ribozyme. Angew. Chem. Int. Ed. Engl. 45:6689–6693.CrossRefGoogle Scholar
  198. 198.
    Link, K.H., Guo, L. and Breaker, R.R. (2006) Examination of the structural and functional versatility of glmS ribozymes by using in vitro selection. Nucleic Acids Res. 34:4968–4975.CrossRefGoogle Scholar
  199. 199.
    Mayer, G. and Famulok, M. (2006) High-throughput-compatible assay for glmS riboswitch metabolite dependence. ChemBioChem 7:602–604.CrossRefGoogle Scholar
  200. 200.
    McCarthy, T.J., Plog, M.A., Floy, S.A., Jansen, J.A., Soukup, J.K. and Soukup, G.A. (2005) Ligand requirements for glmS ribozyme self-cleavage. Chem. Biol. 12:1221–1226.CrossRefGoogle Scholar
  201. 201.
    Tinsley, R.A., Furchak, J.R. and Walter, N.G. (2007) Trans-acting glmS catalytic riboswitch: locked and loaded. RNA 13:468–477.CrossRefGoogle Scholar
  202. 202.
    Roth, A., Nahvi, A., Lee, M., Jona, I. and Breaker, R.R. (2006) Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions. RNA 12:607–619.CrossRefGoogle Scholar
  203. 203.
    Soukup, G.A. (2006) Core requirements for glmS ribozyme self-cleavage reveal a putative pseudoknot structure. Nucleic Acids Res. 34:968–975.CrossRefGoogle Scholar
  204. 204.
    Wilkinson, S.R. and Been, M.D. (2005) A pseudoknot in the 3′ non-core region of the glmS ribozyme enhances self-cleavage activity. RNA 11:1788–1794.CrossRefGoogle Scholar
  205. 205.
    Wilson, T.J., Ouellet, J., Zhao, Z.Y., Harusawa, S., Araki, L., Kurihara, T. and Lilley, D.M. (2006) Nucleobase catalysis in the hairpin ribozyme. RNA 12:980–987.CrossRefGoogle Scholar
  206. 206.
    Cromie, M.J., Shi, Y., Latifi, T. and Groisman, E.A. (2006) An RNA sensor for intracellular Mg(2+). Cell 125:71–84.CrossRefGoogle Scholar
  207. 207.
    Chowdhury, S., Ragaz, C., Kreuger, E. and Narberhaus, F. (2003) Temperature-controlled structural alterations of an RNA thermometer. J. Biol. Chem. 278:47915–47921.CrossRefGoogle Scholar
  208. 208.
    Barrick, J.E., Corbino, K.A., Winkler, W.C., Nahvi, A., Mandal, M., Collins, J., Lee, M., Roth, A., Sudarsan, N., Jona, I., Wickiser, J.K. and Breaker, R.R. (2004) New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. USA 101:6421–6426.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Renaud Tremblay
    • 1
  • Jérôme Mulhbacher
    • 1
  • Simon Blouin
    • 1
  • J. Carlos Penedo
    • 2
  • Daniel A. Lafontaine
    • 1
  1. 1.Département de BiologieUniversité de SherbrookeCanada
  2. 2.School of Physics and AstronomyUniversity of St. AndrewsUK

Personalised recommendations