Functional Nucleic Acid Sensors as Screening Tools

  • Andrea Rentmeister
  • Michael Famulok
Part of the Integrated Analytical Systems book series (ANASYS)


Functional nucleic acids such as aptamers and allosteric ribozymes can sense their ligands specifically, thereby undergoing structural alterations that can be converted into a detectable signal. The direct coupling of molecular recognition to signal generation in real time allows the generation of versatile reporters that can be applied in high-throughput screening (HTS). In the following chapter we describe different types of nucleic acids that have been applied successfully in screening approaches. We first refer to DNA and RNA aptamers, then consider allosteric ribozymes, and finally present examples of natural nucleic acids that were applied in screening assays.


Adenosine Deaminase Fluorescence Polarization Cleavage Activity Hammerhead Ribozyme Aptamer Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the DFG, the SFBs 645 and 704 for grants to M.F., and the Austrian Academy of Sciences for a grant to A.R. and the members of the Famulok lab. This work was supported by Aventis Gencell and by a grant from the Volkswagen Foundation (Priority program “conformational control”) to M.F. We thank M. Blind, G. Mayer, D. Proske, and G. Sengle (Universitat Bonn) for helpful discussions as well as J. Crouzet, J.F. Mayaux, and M. Finer (Aventis Gencell) for support.


  1. 1.
    Owicki, J.C. (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J. Biomol. Screen. 5:297–306.CrossRefGoogle Scholar
  2. 2.
    Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346:818–822.CrossRefGoogle Scholar
  3. 3.
    Robertson, D.L. and Joyce, G.F. (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature (Lond.) 344:467–468.CrossRefGoogle Scholar
  4. 4.
    Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510.CrossRefGoogle Scholar
  5. 5.
    Famulok, M. (2005) Allosteric aptamers and aptazymes as probes for screening approaches. Curr. Opin. Mol. Ther. 7:137–143.Google Scholar
  6. 6.
    Silverman, S.K. (2003) Rube Goldberg goes (ribo)nuclear? Molecular switches and sensors made from RNA. RNA 9:377–383.CrossRefGoogle Scholar
  7. 7.
    Roth, A. and Breaker, R.R. (2004) Selection in vitro of allosteric ribozymes. Methods Mol. Biol. 252:145–164.Google Scholar
  8. 8.
    Breaker, R.R. (2002) Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13:31–39.CrossRefGoogle Scholar
  9. 9.
    Winkler, W.C. and Breaker, R.R. (2003) Genetic control by metabolite-binding riboswitches. ChemBioChem 4:1024–1032.CrossRefGoogle Scholar
  10. 10.
    Barrick, J.E., Corbino, K.A., Winkler, W.C., Nahvi, A., Mandal, M., Collins, J., Lee, M., Roth, A., Sudarsan, N., Jona, I., Wickiser, J.K. and Breaker, R.R. (2004) New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. USA 101:6421–6426.CrossRefGoogle Scholar
  11. 11.
    Yang, Y., Kochoyan, M., Burgstaller, P., Westhof, E. and Famulok, M. (1996) Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science 272:1343–1347.CrossRefGoogle Scholar
  12. 12.
    Williamson, J.R. (2000) Induced fit in RNA–protein recognition. Nat. Struct. Biol. 7:834–837.CrossRefGoogle Scholar
  13. 13.
    Nutiu, R. and Li, Y. (2003) Structure-switching signaling aptamers. J. Am. Chem. Soc. 125:4771–4778.CrossRefGoogle Scholar
  14. 14.
    Nutiu, R., Yu, J.M.Y. and Li, Y. (2004) Signaling aptamers for monitoring enzymatic activity and for inhibitor screening. ChemBioChem 5:1139–1144.CrossRefGoogle Scholar
  15. 15.
    Elowe, N.H., Nutiu, R., Allali-Hassani, A., Cechetto, J.D., Hughes, D.W., Li, Y. and Brown, E.D. (2006) Small-molecule screening made simple for a difficult target with a signaling nucleic acid aptamer that reports on deaminase activity. Angew. Chem. Int. Ed. Engl. 45:5648–5652.CrossRefGoogle Scholar
  16. 16.
    Hafner, M., Schmitz, A., Grune, I., Srivatsan, S.G., Paul, B., Kolanus, W., Quast, T., Kremmer, E., Bauer, I. and Famulok, M. (2006) Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance. Nature (Lond.) 444:941–944.CrossRefGoogle Scholar
  17. 17.
    Tang, J. and Breaker, R.R. (1997) Rational design of allosteric ribozymes. Chem. Biol. 4:453–459.CrossRefGoogle Scholar
  18. 18.
    Najafi-Shoushtari, S.H., Mayer, G. and Famulok, M. (2004) Sensing complex regulatory networks by conformationally controlled hairpin ribozymes. Nucleic Acids Res. 32:3212–3219.CrossRefGoogle Scholar
  19. 19.
    Piganeau, N., Thuillier, V. and Famulok, M. (2001) In vitro selection of allosteric ribozymes: theory and experimental validation. J. Mol. Biol. 312:1177–1190.CrossRefGoogle Scholar
  20. 20.
    Piganeau, N., Jenne, A., Thuillier, V. and Famulok, M. (2001) An allosteric ribozyme regulated by doxycyline. Angew. Chem. Int. Ed. Engl. 40:3503.CrossRefGoogle Scholar
  21. 21.
    Koizumi, M., Soukup, G.A., Kerr, J.N. and Breaker, R.R. (1999) Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat. Struct. Biol. 6:1062–1071.CrossRefGoogle Scholar
  22. 22.
    Robertson, M.P. and Ellington, A.D. (2001) In vitro selection of nucleoprotein enzymes. Nat. Biotechnol. 19:650–655.CrossRefGoogle Scholar
  23. 23.
    Robertson, M.P., Knudsen, S.M. and Ellington, A.D. (2004) In vitro selection of ribozymes dependent on peptides for activity. RNA 10:114–127.CrossRefGoogle Scholar
  24. 24.
    Soukup, G.A. and Breaker, R.R. (1999) Engineering precision RNA molecular switches. Proc. Natl. Acad. Sci. USA 96:3584–3589.CrossRefGoogle Scholar
  25. 25.
    Srinivasan, J., Cload, S.T., Hamaguchi, N., Kurz, J., Keene, S., Kurz, M., Boomer, R.M., Blanchard, J., Epstein, D., Wilson, C. and Diener, J.L. (2004) ADP-specific sensors enable universal assay of protein kinase activity. Chem. Biol. 11:499–508.CrossRefGoogle Scholar
  26. 26.
    Hartig, J.S., Najafi-Shoushtari, S.H., Grune, I., Yan, A., Ellington, A.D. and Famulok, M. (2002) Protein-dependent ribozymes report molecular interactions in real time. Nat. Bio-technol. 20:717–722.CrossRefGoogle Scholar
  27. 27.
    Hartig, J.S. and Famulok, M. (2002) Reporter ribozymes for real-time analysis of domain-specific interactions in biomolecules: HIV-1 reverse transcriptase and the primer-template complex. Angew. Chem. Int. Ed. Engl. 41:4263–4266.CrossRefGoogle Scholar
  28. 28.
    Najafi-Shoushtari, S.H. and Famulok, M. (2007) DNA aptamer-mediated regulation of the hairpin ribozyme by human alpha-thrombin. Blood Cells Mol. Dis. 38:19–24.CrossRefGoogle Scholar
  29. 29.
    Winkler, W.C. (2005) Riboswitches and the role of noncoding RNAs in bacterial metabolic control. Curr. Opin. Chem. Biol. 9:594–602.CrossRefGoogle Scholar
  30. 30.
    Blount, K. and Breaker, R. (2006) Riboswitches as antibacterial drug targets. Nat. Biotechnol. 12:1558–1564.CrossRefGoogle Scholar
  31. 31.
    Mayer, G. and Famulok, M. (2006) High-throughput-compatible assay for glmS riboswitch metabolite dependence. ChemBioChem 7:602–604.CrossRefGoogle Scholar
  32. 32.
    Blount, K., Puskarz, I., Penchovsky, R. and Breaker, R. (2006) Development and application of a high-throughput assay for glmS riboswitch activators. RNA Biol. 3:77–81.Google Scholar
  33. 33.
    Sudarsan, N., Wickiser, J.K., Nakamura, S., Ebert, M.S. and Breaker, R.R. (2003) An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. 17:2688–2697.CrossRefGoogle Scholar
  34. 34.
    Sudarsan, N., Cohen-Chalamish, S., Nakamura, S., Emilsson, G.M. and Breaker, R.R. (2005) Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithia-mine. Chem. Biol. 12:1325–1335.CrossRefGoogle Scholar
  35. 35.
    Davies, B.P. and Arenz, C. (2006) A homogenous assay for micro RNA maturation. Angew. Chem. Int. Ed. Engl. 45:5550–5552.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andrea Rentmeister
    • 1
  • Michael Famulok
    • 1
  1. 1.LIMES Program Unit Chemical Biology & Medicinal ChemistryUniversity of BonnGermany

Personalised recommendations