Aptamers in Affinity Separations: Stationary Separation

  • Corinne Ravelet
  • Eric Peyrin
Part of the Integrated Analytical Systems book series (ANASYS)


The use of DNA or RNA aptamers as tools in analytical chemistry is a very promising field of research because of their capabilities to bind specifically the target molecules with an affinity similar to that of antibodies. Notably, they appear to be of great interest as target-specific ligands for the separation and capture of various analytes in affinity chromatography and related affinity-based methods such as magnetic bead technology. In this chapter, the recent developments of these aptamer-based separation/capture approaches are addressed.


Chiral Stationary Phase Immobilize Ligand Elution Scheme SELEX Procedure Enantioselective Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346:818–822.CrossRefGoogle Scholar
  2. 2.
    Robertson, D.L. and Joyce, G.F. (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature (Lond.) 344:467–468.CrossRefGoogle Scholar
  3. 3.
    Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510.CrossRefGoogle Scholar
  4. 4.
    Jayasena, S.D. (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45:1628–1650.Google Scholar
  5. 5.
    Collett, J.R., Cho, E.J. and Ellington, A.D. (2005) Production and processing of aptamer microarrays. Methods 37:4–15.CrossRefGoogle Scholar
  6. 6.
    O'Sullivan, C.K. (2002) Aptasensors — the future of biosensing? Anal. Bioanal. Chem. 372:44–48.CrossRefGoogle Scholar
  7. 7.
    Romig, T.S., Bell, C. and Drolet, D.W. (1999) Aptamer affinity chromatography: combinatorial chemistry applied to protein purification. J. Chromatogr. B 731:275–284.CrossRefGoogle Scholar
  8. 8.
    Connor, A.C. and McGown, L.B. (2006) Aptamer stationary phase for protein capture in affinity capillary chromatography. J. Chromatogr. A 1111:115–119.CrossRefGoogle Scholar
  9. 9.
    Cho, S., Lee, S., Chung, W., Kim, Y., Lee, Y. and Kim, B. (2004) Microbead-based affinity chromatography chip using RNA aptamer modified with photocleavable linker. Electrophoresis 25:3730–3739.CrossRefGoogle Scholar
  10. 10.
    Chung, W., Kim, M., Cho, S., Park, S., Kim, J., Kim, Y., Kim, B. and Lee, Y. (2005) Microaffinity purification of proteins based on photolytic elution: toward an efficient microbead affinity chromatography on a chip. Electrophoresis 26:694–702.CrossRefGoogle Scholar
  11. 11.
    Murphy, M.B., Fuller, S.T., Richardson, P.M. and Doyle, S.A. (2003) An improved method for in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Res. 31:e110.CrossRefGoogle Scholar
  12. 12.
    Bachler, M., Schroeder, R. and von Ahsen, U. (1999) StreptoTag: a novel method for the isolation of RNA-binding proteins. RNA 5:1509–1516.CrossRefGoogle Scholar
  13. 13.
    Windbichler, N. and Schroeder, R. (2006) Isolation of specific RNA-binding proteins using the streptomycin-binding RNA aptamer. Nat. Protocols 1:637–640.CrossRefGoogle Scholar
  14. 14.
    Dangerfield, J.A., Windbichler, N., Salmons, B., Gunzburg, W.H. and Schroeder, R. (2006) Enhancement of the StreptoTag method for isolation of endogenously expressed proteins with complex RNA binding targets. Electrophoresis 27:1874–1877.CrossRefGoogle Scholar
  15. 15.
    Harmuth, K., Urlaub, H., Vornlocher, H.P., Will, C.L., Gentzel, M., Wilm, M. and Luhrmann, R. (2002) Protein composition of human prespliceosomes isolated by a tobramycin affinity-selection method. Proc. Natl. Acad. Sci. USA 99:16719–16724.CrossRefGoogle Scholar
  16. 16.
    Srisawat, C., Goldstein, I.J. and Engelke, D.R. (2001) Sephadex-binding RNA ligands: rapid affinity purification of RNA from complex RNA mixtures. Nucleic Acids Res. 29:e4.CrossRefGoogle Scholar
  17. 17.
    Srisawat, C. and Engelke, D.R. (2001) Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. RNA 7:632–641.CrossRefGoogle Scholar
  18. 18.
    Srisawat, C. and Engelke, D.R. (2002) RNA affinity tags for purification of RNAs and ribo-nucleoprotein complexes. Methods 26:156–161.CrossRefGoogle Scholar
  19. 19.
    Deng, Q., German, I., Buchanan, D. and Kennedy, R.T. (2001) Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase. Anal. Chem. 73:5415–5421.CrossRefGoogle Scholar
  20. 20.
    Deng, Q., Watson, C.J. and Kennedy, R.T. (2003) Aptamer affinity chromatography for rapid assay of adenosine in microdialysis samples collected in vivo. J. Chromatogr. A 1005:123–130.CrossRefGoogle Scholar
  21. 21.
    Michaud, M., Jourdan, E., Villet, A., Ravel, A., Grosset, C. and Peyrin, E. (2003) A DNA aptamer as a new target-specific chiral selector for HPLC. J. Am. Chem. Soc. 125:8672–8679.CrossRefGoogle Scholar
  22. 22.
    Michaud, M., Jourdan, E., Ravelet, C., Villet, A., Ravel, A., Grosset, C. and Peyrin, E. (2004) Immobilized DNA aptamers as target-specific chiral stationary phases for resolution of nucleoside and amino acid derivative enantiomers. Anal. Chem. 76:1015–1020.CrossRefGoogle Scholar
  23. 23.
    Geiger, A., Burgstaller, P., von der Eltz, H., Roeder, A. and Famulok, M. (1996) RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res. 24:1029–1036.CrossRefGoogle Scholar
  24. 24.
    Majerfeld, I., Puthenvedu, D. and Yarus, M. (2005) RNA affinity for molecular L-histidine; genetic code origins. J. Mol. Evol. 61:226–235.CrossRefGoogle Scholar
  25. 25.
    Brumbt, A., Ravelet, C., Grosset, C., Ravel, A., Villet, A. and Peyrin, E. (2005) Chiral stationary phase based on a biostable L-RNA aptamer. Anal. Chem. 77:1993–1998.CrossRefGoogle Scholar
  26. 26.
    Klussmann, S., Nolte, A., Bald, R., Erdmann, A. and Furste, J.P. (1996) Mirror-image RNA that binds D-adenosine. Nat. Biotechnol. 14:1112–1115.CrossRefGoogle Scholar
  27. 27.
    Ruta, J., Grosset, C., Ravelet, C., Fize, J., Villet, A., Ravel, A. and Peyrin, E. (2007) Chiral resolution of histidine using an anti-D-histidine L-RNA aptamer microbore column. J. Chromatogr. B 845:186–190.CrossRefGoogle Scholar
  28. 28.
    Ravelet, C., Boulkedid, R., Ravel, A., Grosset, C., Villet, A., Fize, J. and Peyrin, E. (2005) A L-RNA aptamer chiral stationary phase for resolution of target and related compounds. J. Chromatogr. A 1076:62–70.CrossRefGoogle Scholar
  29. 29.
    Green, L.S., Jellinek, D., Bell, C., Beebe, L.A., Feistner, B.D., Gill, S.C., Jucker, F. and Janjic, N. (1995) Nuclease-resistant nucleic acid ligands to vascular permeability factor/ vascular endothelial growth factor. Chem. Biol. 2:683–695.CrossRefGoogle Scholar
  30. 30.
    Mendonsa, S.D. and Bowser, M.T. (2005) In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. J. Am. Chem. Soc. 127:9382–9383.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Corinne Ravelet
    • 1
  • Eric Peyrin
    • 1
  1. 1.Département de Pharmacochimie Moléculaire UMR 5063 CNRS, Institut de Chimie Moléculaire de Grenoble FR 2607Université Joseph FourierFrance

Personalised recommendations