Advertisement

NHE3 in the Human Brainstem: Implication for the Pathogenesis of the Sudden Infant Death Syndrome (SIDS)?

  • Martin Wiemann
  • Stilla Frede
  • Frank Tschentscher
  • Heidrun Kiwull-Schöne
  • Peter Kiwull
  • Dieter Bingmann
  • Bernd Brinkmann
  • Thomas Bajanowski
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 605)

Previous studies have demonstrated an inverse correlation between the degree of respiratory drive and NHE3 mRNA expression in the brainstem of awake rabbits. Here we show that the levels of NHE3 mRNA extractable from kryo-conserved tissue are highly variable also in the human brainstem. As an insufficient drive to breath may be a final event causing sudden infant death, we compared the expression of NHE3 mRNA in a collective of children who died from non-natural causes to an equal number of SIDS victims. Evaluation of signals from NHE3 RT-PCR showed higher values for the SIDS collective than for the control group. We suggest that the level of NHE3 expression in brainstem tissue may contribute to the vulnerability of infants for SIDS.

Keywords

Sudden Infant Death Syndrome Serotonergic Neuron Respiratory Drive Chronic Intermittent Hypoxia Human Brainstem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajanowski, T., Vennemann, M., Bohnert, M., Rauch, E., Brinkmann, B., Mitchell, E.A. and the GeSID Group (2005) Unnatural causes of sudden unexpected deaths initially thought to be sudden infant death syndrome. Int. J. Legal Med. 119, 213–216.CrossRefPubMedGoogle Scholar
  2. Dempsey, J.A., Smith, C.A., Przybylowski, T., Chenuel, B., Xie, A., Nakayama, H. and Skatrud, J.B. (2004) The ventilatory responsiveness to CO2 below eupnoea as a determinant of ventilatory stability in sleep. J. Physiol. (Lond.) 560, 1–11.CrossRefGoogle Scholar
  3. Douglas, R.M., Xue, J., Chen, J.Y., Haddad, C.G. Alper, S.L. and Haddad, G.G. (2003) Chronic intermittent hypoxia decreases the expression of Na/H exchangers and HCO3 dependent transporters in mouse CNS. J. Appl. Physiol. 95, 292–299.PubMedGoogle Scholar
  4. Kahn, A., Groswasser, J., Rebuffat, E., Sottiaux, M., Blum, D., Foerster, M., Franco, P., Bochner, A., Alexander, M. and Bachy, A. (1992) Sleep and cardiorespiratory characteristics of infant victims of sudden death: a prospective case-control study. Sleep 15, 287–292.PubMedGoogle Scholar
  5. Khoo, M.C.K. (2000) Determinants of ventilatory instability and variability. Respir. Physiol. 122, 167–182.CrossRefPubMedGoogle Scholar
  6. Tryba, A.K., Pena, F. and Ramirez, J.N. (2006) Gasping activity in vitro: a rhythm dependent on 5-HT2A receptors. J. Neurosci. 26, 2623–2634.CrossRefPubMedGoogle Scholar
  7. Kinney, H.C. (2005) Abnormalities of the brainstem serotonergic system in the sudden infant death syndrome: a review. Pediatr. Devel. Pathol. 8, 507–524.CrossRefGoogle Scholar
  8. Kiwull-Schöne, H., Wiemann, M., Frede, S., Bingmann, D., Wirth, K.J., Heinelt, U., Lang, H.-J. and Kiwull, P. (2001) A novel inhibitor of the Na+/H+ exchanger type 3 activates the central respiratory CO2 response and lowers the apneic threshold. Am. J. Respir. Crit. Care Med. 164, 1303–1311.PubMedGoogle Scholar
  9. Kiwull-Schöne, H., Wiemann, M., Frede, S., Bingmann, D. and Kiwull, P. (2003) Tentative role of the Na+/H+ exchanger type 3 in central chemosensitivity of respiration. Adv. Exp. Med. Biol. 536, 415–421.PubMedGoogle Scholar
  10. Ma, E. and Haddad, G.G. (1997) Expression and localization of Na+/H+ exchangers in rat central nervous system. Neuroscience 79, 591–603.CrossRefPubMedGoogle Scholar
  11. Orlowski, J. and Grinstein, S. (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch. Eur. J. Physiol. 447, 549–565.CrossRefGoogle Scholar
  12. Richerson, G.B. (2004) Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat. Rev. Neurosci. 5, 449–461.CrossRefPubMedGoogle Scholar
  13. Rognum, T.O. and Saugstad, O.D. (1993) The fatal triangle in SIDS. Acta Paediatr. (Suppl.) 389, 852–854.Google Scholar
  14. Sawaguchi, T., Patricia, F., Kadhim, H., Groswasser, J., Sottiaux, M., Nishida, H. and Kahn, A. (2003) The correlation between serotonergic neurons in the brainstem and sleep apnea in SIDS victims. Early Hum. Dev. 75 (Suppl.), S31–S40.CrossRefPubMedGoogle Scholar
  15. Shannon, D.C., Kelly, D.H. and O’Connell, K. (1977) Abnormal regulation of ventilation in infants at risk for sudden infant-death syndrome. N. Engl. J. Med. 297, 747–50.PubMedCrossRefGoogle Scholar
  16. Wiemann, M., Schwark, J.R., Bonnet, U., Jansen, H.W., Grinstein, S., Baker, R.E., Lang, H.J, Wirth, K. and Bingmann, D. (1999) Selective inhibition of the Na+/H+ exchanger type 3 activates CO2/H+-sensitive medullary neurones. Pflugers Arch. Eur. J. Physiol. 438, 255–262.CrossRefGoogle Scholar
  17. Wiemann, M., Frede, S., Bingmann, D., Kiwull, P. and Kiwull-Schöne, H. (2005) Sodium/Proton exchanger 3 in the medulla oblongata and set point of breathing control. Am. J. Respir. Crit. Care Med. 172, 244–249.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Martin Wiemann
  • Stilla Frede
  • Frank Tschentscher
  • Heidrun Kiwull-Schöne
  • Peter Kiwull
  • Dieter Bingmann
  • Bernd Brinkmann
  • Thomas Bajanowski

There are no affiliations available

Personalised recommendations