Skip to main content

Biochemical Control of Airway Motor Neurons During Rapid Eye Movement Sleep

  • Chapter
Integration in Respiratory Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 605))

Skeletal muscle tone is potently suppressed during rapid eye movement (REM) sleep. It is hypothesized that this suppression is due to the active inhibition of somatic motor neurons. Active inhibition involves an increase in the release of inhibitory neurotransmitters, specifically glycine and γ-aminobutyric acid (GABA), which work to actively suppress motor neuron excitability and hence muscle tone. While there is evidence supporting a role for active inhibition in REM sleep, most of this work derives from single-cell recordings in head-restrained cats or from pharmacological models of REM sleep (e.g., carbachol-induced REM-like sleep) (Chase, Soja and Morales 1989; Chirwa, Stafford-Segert, Soja and Chase 1991; Fenik, Davies and Kubin 2005; Soja, Finch and Chase 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chase, M.H. and Morales, F.R. (1983) Subthreshold excitatory activity and motoneuron discharge during REM periods of active sleep. Science 221, 1195–1198.

    Article  CAS  PubMed  Google Scholar 

  • Chase, M.H., Soja, P.J. and Morales, F.R. (1989) Evidence that glycine mediates the postsynaptic potentials that inhibit lumbar motoneurons during the atonia of active sleep. J Neurosci. 9, 743–751.

    CAS  PubMed  Google Scholar 

  • Chirwa, S.S., Stafford-Segert, I., Soja, P.J. and Chase, M.H. (1991) Strychnine antagonizes jaw-closer motoneuron IPSPs induced by reticular stimulation during active sleep. Brain Res. 547, 323–326.

    Article  CAS  PubMed  Google Scholar 

  • de Groen, J.H. and Kamphuisen, H.A. (1978) Periodic nocturnal myoclonus in a patient with hyperexplexia (startle disease). J. Neurol. Sci. 38, 207–213.

    Article  PubMed  Google Scholar 

  • Fenik, V.B., Davies, R.O. and Kubin, L. (2005) Noradrenergic, serotonergic and GABAergic antagonists injected together into the XII nucleus abolish the REM sleep-like depression of hypoglossal motoneuronal activity. J. Sleep Res. 14, 419–429.

    Article  PubMed  Google Scholar 

  • Gundlach, A.L., Dodd, P.R., Grabara, C.S., Watson, W.E., Johnston, G.A., Harper, P.A., Dennis, J.A. and Healy, P.J. (1988) Deficit of spinal cord glycine/strychnine receptors in inherited myoclonus of Poll Hereford calves. Science 241, 1807–1810.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, J.L., Sood, S., Liu, H., Park, E., Liu, X., Nolan, P. and Horner, R.L. (2003) Role of inhibitory amino acids in control of hypoglossal motor outflow to genioglossus muscle in naturally sleeping rats. J. Physiol. 552, 975–991.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, Y., Goldberg, L.J., Chandler, S.H. and Chase, M.H. (1978) Intracellular analysis of trigeminal motoneuron activity during sleep in the cat. Science 199, 204–207.

    Article  CAS  PubMed  Google Scholar 

  • Olson, E.J., Boeve, B.F. and Silber, M.H. (2000) Rapid eye movement sleep behaviour disorder: demographic, clinical and laboratory findings in 93 cases. Brain 123 (Pt. 2), 331–339.

    Article  PubMed  Google Scholar 

  • Remmers, J.E., Anch, A.M., deGroot, W.J., Baker, J.P., Jr. and Sauerland, E.K. (1980) Oropharyngeal muscle tone in obstructive sleep apnea before and after strychnine. Sleep 3, 447–453.

    CAS  PubMed  Google Scholar 

  • Schenck, C.H. and Mahowald, M.W. (1990) A polysomnographic, neurologic, psychiatric and clinical outcome report on 70 consecutive cases with REM sleep behavior disorder (RBD): sustained clonazepam efficacy in 89.5% of 57 treated patients. Clev. Clin. J. Med. 57, Suppl. 10–24.

    Google Scholar 

  • Soja, P.J., Finch, D.M. and Chase, M.H. (1987) Effect of inhibitory amino acid antagonists on masseteric reflex suppression during active sleep. Exp. Neurol. 96, 178–193.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Brooks, P.L., Peever, J.H. (2008). Biochemical Control of Airway Motor Neurons During Rapid Eye Movement Sleep. In: Poulin, M.J., Wilson, R.J.A. (eds) Integration in Respiratory Control. Advances in Experimental Medicine and Biology, vol 605. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73693-8_76

Download citation

Publish with us

Policies and ethics