Advertisement

Significance of Multiple Neurochemicals that Regulate Respiration

  • Paul M. Pilowsky
  • Qi-Jian Sun
  • Tina Longergan
  • John M. Makeham
  • Maryam Seyedabadi
  • Todd A. Verner
  • Ann K. Goodchild
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 605)

Current efforts to characterize the neuronal mechanisms that underlie automatic breathing generally adopt a ‘minimalist’ approach. In this review, we survey three of the many neurochemicals that are known to be present in raphe neurons and may be involved in respiration. Specifically, we ask the question, ‘Is the minimalist approach consistent with the large number of neuronal types and neurochemicals found in respiratory centres?’

Keywords

Intermittent Hypoxia Respiratory Neuron Phrenic Nerve Activity Ventral Respiratory Group Ventral Medulla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballanyi, K., Lalley, P.M., Hoch, B. and Richter, D.W. (1997) cAMP-dependent reversal of opioid- and prostaglandin-mediated depression of the isolated respiratory network in newborn rats. J. Physiol. (Lond.) 504, 127–134.CrossRefGoogle Scholar
  2. Cao, Y., Matsuyama, K., Fujito, Y. and Aoki, M. (2006) Involvement of medullary GABAergic and serotonergic raphe neurons in respiratory control: Electrophysiological and immunohistochemical studies in rats. Neurosci. Res. 56(3), 322–331.CrossRefPubMedGoogle Scholar
  3. Gatti, P.J., Llewellyn-Smith, I.J., Sun, Q.J., Chalmers, J. and Pilowsky, P.M. (1999) Substance P-immunoreactive boutons closely appose inspiratory protruder hypoglossal motoneurons in the cat. Brain Res. 834, 155–159.CrossRefPubMedGoogle Scholar
  4. Guyenet, P.G., Stornetta, R.L., Bayliss, D.A. and Mulkey, D.K. (2005) Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors. Exp. Physiol. 90, 247–253.CrossRefPubMedGoogle Scholar
  5. Holtman, J.R., Dick, T.E. and Berger, A.J. (1986) Involvement of serotonin in the excitation of phrenic motoneurons evoked by stimulation of the raphe obscurus. J. Neurosci. 6, 1185–1193.PubMedGoogle Scholar
  6. Holtman, J.R., Jr. and King, K.A. (1994) Effect of activation of 5-HT1A receptors at the ventral medulla on phrenic nerve activity. Eur. J. Pharmacol. 253, 307–310.CrossRefPubMedGoogle Scholar
  7. Holtman, J.R., Norman, W.P., Skirboll, L., Dretchen, K.L., Cuello, C., Visser, T.J., Hökfelt, T. and Gillis, R.A. (1984) Evidence for 5-hydroxytryptamine, substance P and thyrotropin-releasing hormone in neurons innervating the phrenic motor nucleus. J. Neurosci. 4, 1064–1071.PubMedGoogle Scholar
  8. Holtman J.R., Jr. (1988) Immunohistochemical localization of serotonin- and substance P-containing fibers around respiratory muscle motoneurons in the nucleus ambiguus of the cat. Neuroscience 26, 169–178.CrossRefPubMedGoogle Scholar
  9. Janczewski, W.A. and Feldman, J.L. (2006) Distinct rhythm generators for inspiration and expiration in the juvenile rat. J. Physiol. (Lond.) 570, 407–420.Google Scholar
  10. Lalley, P.M. (2003) Mu-opioid receptor agonist effects on medullary respiratory neurons in the cat: evidence for involvement in certain types of ventilatory disturbances. Am. J. Physiol. 285, R1287–R1304.Google Scholar
  11. Lalley, P.M., Benacka, R., Bischoff, A.M. and Richter, D.W. (1997) Nucleus raphe obscurus evokes 5-HT-1A receptor-mediated modulation of respiratory neurons. Brain Res. 747, 156–159.CrossRefPubMedGoogle Scholar
  12. Li, A. and Nattie, E. (2006) Catecholamine neurones in rats modulate sleep, breathing, central chemoreception and breathing variability. J. Physiol. (Lond.) 570, 385–96.Google Scholar
  13. Li, Q., Goodchild, A.K., Seyedabadi, M. and Pilowsky, P.M. (2005) Pre-protachykinin A mRNA is colocalized with tyrosine hydroxylase-immunoreactivity in bulbospinal neurons. Neuroscience 136, 205–216.CrossRefPubMedGoogle Scholar
  14. Lonergan, T., Goodchild, A.K., Christie, M.J. and Pilowsky, P.M. (2003a) Mu opioid receptors in rat ventral medulla: effects of endomorphin-1 on phrenic nerve activity. Respir. Physiol. Neurobiol. 138, 165–178.CrossRefPubMedGoogle Scholar
  15. Lonergan, T., Goodchild, A.K., Christie, M.J. and Pilowsky, P.M. (2003b) Presynaptic delta opioid receptors differentially modulate rhythm and pattern generation in the ventral respiratory group of the rat. Neuroscience 121, 959–973.CrossRefPubMedGoogle Scholar
  16. Lovett-Barr, M.R., Mitchell, G.S., Satriotomo, I. and Johnson, S.M. (2006) Serotonin-induced in vitro long-term facilitation exhibits differential pattern sensitivity in cervical and thoracic inspiratory motor output. Neuroscience 142, 885–892.CrossRefPubMedGoogle Scholar
  17. Makeham, J.M., Goodchild, A.K. and Pilowsky, P.M. (2005) NK1 receptor activation in rat rostral ventrolateral medulla selectively attenuates somato-sympathetic reflex while antagonism attenuates sympathetic chemoreflex. Am. J. Physiol. 288, R1707–R1715.Google Scholar
  18. McKay, L.C., Janczewski, W.A. and Feldman, J.L. (2005) Sleep-disordered breathing after targeted ablation of preBotzinger complex neurons. Nat. Neurosci. 8, 1142–1144.CrossRefPubMedGoogle Scholar
  19. Mitchell, G.S., Baker, T.L., Nanda, S.A., Fuller, D.D., Zabka, A.G., Hodgeman, B.A., Bavis, R.W., Mack, K.J. and Olson, E.B., Jr. (2001) Invited review: Intermittent hypoxia and respiratory plasticity. J. Appl. Physiol. 90, 2466–2475.PubMedGoogle Scholar
  20. Nattie, E.E., Li, A., Richerson, G. and Lappi, D.A. (2004) Medullary serotonergic neurones and adjacent neurones that express neurokinin-1 receptors are both involved in chemoreception in vivo. J. Physiol. (Lond.) 556, 235–253.CrossRefGoogle Scholar
  21. Pagliardini, S., Adachi, T., Ren, J., Funk, G.D. and Greer, J.J. (2005) Fluorescent tagging of rhythmically active respiratory neurons within the pre-Botzinger complex of rat medullary slice preparations. J. Neurosci. 25, 2591–2596.CrossRefPubMedGoogle Scholar
  22. Pilowsky, P.M., de Castro, D., Llewellyn-Smith, I.J., Lipski, J. and Voss, M.D. (1990) Serotonin immunoreactive boutons make synpases with feline phrenic motoneurons. J. Neurosci. 10, 1091–1098.PubMedGoogle Scholar
  23. Richerson, G.B., Wang, W., Hodges, M.R., Dohle, C.I. and Diez-Sampedro, A. (2005) Homing in on the specific phenotype(s) of central respiratory chemoreceptors. Exp. Physiol. 90, 259–266.CrossRefPubMedGoogle Scholar
  24. Rybak, I.A., Shevtsova, N.A., St-John, W.M., Paton, J.F. and Pierrefiche, O. (2003) Endogenous rhythm generation in the pre-Botzinger complex and ionic currents: modelling and in vitro studies. Eur. J. Neurosci. 18, 239–257.CrossRefPubMedGoogle Scholar
  25. Schwarzacher, S.W., Pestean, A., Gunther, S. and Ballanyi, K. (2002) Serotonergic modulation of respiratory motoneurons and interneurons in brainstem slices of perinatal rats. Neuroscience 115, 1247–1259.CrossRefPubMedGoogle Scholar
  26. Steinbusch, H.W.M. (1984) Serotonin-immunoreactive neurons and their projections in the CNS. In: A. Björklund, T. Hökfelt and M. J. Kuhar (Eds.), Handbook of Chemical Neuroanatomy, Elsevier Science, pp. 68–125.Google Scholar
  27. Sun, Q.J., Berkowitz, R.G., Goodchild, A.K. and Pilowsky, P.M. (2002) Serotonin inputs to inspiratory laryngeal motoneurons in the rat. J. Comp. Neurol. 451, 91–98.CrossRefPubMedGoogle Scholar
  28. Tryba, A.K., Pena, F. and Ramirez, J.M. (2006) Gasping activity in vitro: a rhythm dependent on 5-HT2A receptors. J. Neurosci. 26, 2623–2634.CrossRefPubMedGoogle Scholar
  29. Verner, T.A., Goodchild, A.K. and Pilowsky, P.M. (2004) A mapping study of cardiorespiratory responses to chemical stimulation of the midline medulla oblongata in ventilated and freely breathing rats. Am. J. Physiol. 287, R411–R421.CrossRefGoogle Scholar
  30. Voss, M.D., de Castro, D., Lipski, J., Pilowsky, P.M. and Jiang, C. (1990) Serotonin immunoreactive boutons form close appositions with respiratory neurons of the dorsal respiratory group in the cat. J. Comp. Neurol. 295, 208–218.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Paul M. Pilowsky
    • 1
  • Qi-Jian Sun
    • 1
  • Tina Longergan
    • 1
  • John M. Makeham
    • 1
  • Maryam Seyedabadi
    • 1
  • Todd A. Verner
    • 1
  • Ann K. Goodchild
    • 1
  1. 1.Australian School of Advanced MedicineMacquarie UnviersityAustralia

Personalised recommendations