Elevated Body Temperature Exaggerates Laryngeal Chemoreflex Apnea in Decerebrate Piglets

  • Luxi Xia
  • Tracey Damon
  • J. C. Leiter
  • Donald BartlettJr.
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 605)

We investigated the interaction between body temperature and the duration of the laryngeal chemoreflex (LCR) in decerebrate piglets. Elevating body temperature by ∼ 2°C prolongs the duration of the LCR and the length of apnea associated with the reflex. This thermal prolongation seems to arise within the nucleus of the solitary tract in the brainstem, and we believe the thermal effect is mediated by enhanced GABAergic neurotransmission.


Sudden Infant Death Syndrome Solitary Tract Superior Laryngeal Nerve GABAergic Neurotransmission Elevated Body Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abu-Shaweesh, J.M., Dreshaj, I.A., Haxhiu, M.A. and Martin, R.J. (2001) Central GABAergic mechanisms are involved in apnea induced by SLN stimulation in piglets. J. Appl. Physiol. 90, 1570–1576.PubMedGoogle Scholar
  2. Boggs, D.F. and Bartlett, D., Jr. (1982) Chemical specificity of a laryngeal apneic reflex in puppies. J. Appl. Physiol. 53, 455–462.PubMedGoogle Scholar
  3. Bolton, D.P.G., Nelson, E.A.S., Taylor, B.J. and Weatherall, I.L. (1996) Thermal balance in infants. J. Appl. Physiol. 80, 2234–2242.CrossRefPubMedGoogle Scholar
  4. Curran, A.K., Xia, L., Leiter, J.C. and Bartlett, D., Jr. (2005) Elevated body temperature enhances the laryngeal chemoreflex in decerebrate piglets. J. Appl. Physiol. 98, 780–786.CrossRefPubMedGoogle Scholar
  5. Downing, S.E. and Lee, J.C. (1975) Laryngeal chemosensitivity: A possible mechanism of sudden infant death. Pediatrics 55, 640–649.PubMedGoogle Scholar
  6. Ezure, K. and Tanaka, I. (2004) GABA, in some cases together with glycine, is used as the inhibitory transmitter by pump cells in the Hering-Breuer reflex pathway of the rat. Neuroscience 127, 409–417.CrossRefPubMedGoogle Scholar
  7. Fleming, P.J., Gilbert, R., Azaz, Y., Berry, P.J., Rudd, P.T., Stewart, A.J. and Hall, E. (1990) Interaction between bedding and sleeping position in the SIDS: a population based case-control study. BMJ 301, 85–89.CrossRefPubMedGoogle Scholar
  8. Guntheroth, W.G. and Spiers, P.S. (2001) Thermal stress in Sudden Infant Death: Is there an ambiguity with the rebreathing hypothesis? Pediatrics 107, 693–698.CrossRefPubMedGoogle Scholar
  9. Haraguchi, S., Fung, R.Q. and Sasaki, R. (1983) Effect of hyperthermia on the laryngeal closure reflex. Implications in the sudden infant death syndrome. Ann. Otol. Rhinol. Laryngol. 92, 24–28.PubMedGoogle Scholar
  10. Harding, R., Johnson, P. and Johnston, B.E. (1975) Cardiovascular changes in new-born lambs during apnoea induced by stimulation of laryngeal receptors with water. J. Physiol. (Lond.) 256, 35P–37P.Google Scholar
  11. Inoue, S. and Murakami, N. (1976) Unit responses in the medulla oblongata of rabbit to changes in local and cutaneous temperature. J. Physiol. 259, 339–356.PubMedGoogle Scholar
  12. Iyasu, S., Randall, L.L., Welty, T.K., Hsia, J., Kinney, H.C., Mandell, F., McClain, M., Randall, B., Habbe, D., Wilson, H. et al. (2002) Risk factors for sudden infant death syndrome among northern plains Indians. JAMA 288, 2717–2723.CrossRefPubMedGoogle Scholar
  13. Kleeman, W.J., Schlaud, M., Poets, C.F., Rothämel, T. and Tröger, H.D. (1996) Hyperthermia in sudden infant death. Int. J. Legal Med. 109, 139–142.CrossRefGoogle Scholar
  14. Mitchell, E.A., Ford, R.P.K., Stewart, A.K., Taylor, B.J., Becroft, D.M.O., Thompson, J.M.D., Scragg, R., Hassall, M.B., Barry, D.M.J., Allen, E.M. et al. (1993) Smoking and the Sudden Infant Death Syndrome. Pediatrics 91, 893–896.PubMedGoogle Scholar
  15. Paris, C.A., Remler, R. and Daling, J.R. (2001) Risk factors for sudden infant death syndrome: Changes associated with sleep position recommendations. J. Pediatr. 139, 771–777.CrossRefPubMedGoogle Scholar
  16. van der Velde, L., Curran, A., Filiano, J.J., Darnall, R.A., Bartlett, D., Jr. and Leiter, J.C. (2003) Prolongation of the laryngeal chemoreflex prolongation after inhibition of the rostroventral medulla: A role in SIDS? J. Appl. Physiol. 94, 1883–1895.Google Scholar
  17. Xia, L., Leiter, J.C. and Bartlett, D., Jr. (2005) Laryngeal water receptors are insensitive to body temperature in neonatal piglets. Respir. Physiol. Neurobiol. 150, 82–86.CrossRefPubMedGoogle Scholar
  18. Xia, L., Damon, T.A., Leiter, J.C. and Bartlett, D., Jr. (2006) Focal warming of the nucleus of the solitary tract prolongs the laryngeal chemoreflex in decerebrate piglets. J. Appl. Physiol. 102, 54–62.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Luxi Xia
  • Tracey Damon
  • J. C. Leiter
  • Donald BartlettJr.

There are no affiliations available

Personalised recommendations