Skip to main content

Pulmonary Gas Exchange in Anatomically-Based Models of the Lung

  • Chapter
Integration in Respiratory Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 605))

Pulmonary gas exchange can be investigated at different scales of interest. Our approach is to couple models of gas exchange to anatomically-detailed models of the airway and pulmonary vascular trees. We are linking a hierarchy of models from the capillary segment up to the whole lung, so that a change in the detailed small-scale behaviour has a flow-on effect to function at a larger scale. The anatomically-based models will be used to understand how regional perturbations to the structure or function of the airway and vascular trees and the state of health of the functional tissue affect gas exchange. We are interested in the degree to which the system can be perturbed before it is detected by standard laboratory measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ben-Tal, A. (2006) Simplified models for gas exchange in the human lungs. Journal of Theoretical Biology 238(2), 474–495.

    Article  PubMed  Google Scholar 

  • Burrowes, K.S., Tawhai, M.H and Hunter, P.J. (2003) Modeling RBC and neutrophil distribution through an anatomically based pulmonary capillary network. Annals of Biomedical Engineering 32(4), 585–595.

    Article  Google Scholar 

  • Felici, M., Filoche, M., Straus, C., Similowski, T. and Sapoval, B. (2005) Diffusional screening in real 3D human acini–a theoretical study. Respiratory Physiology and Neurobiology 145(2–3), 279–293.

    Article  CAS  PubMed  Google Scholar 

  • Hedges, K.L., Hunter, P.J. and Tawhai, M.H. (2006) Image-based computational model of a breathing lung. Proceedings of the American Thoracic Society (PATS), abstract, [Online], 3, A876. Available: http://www.abstracts2view.com/ats06/sessionindex.php [7 September 2006].

  • Holland, R.A.B., van Hezewijk, W. and Zubzanda, J. (1977) Velocity of oxygen uptake by partly saturated adult and fetal human red cells. Respiration Physiology 29(3), 303–314.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C.H., Niranjan, S.C., Clark, J.W., Jr., San, K.Y., Zwischenberger, J.B. and Bidani, A. (1998) Airway mechanics, gas exchange, and blood flow in a nonlinear model of the normal human lung. Journal of Applied Physiology 84(4), 1447–1469.

    CAS  PubMed  Google Scholar 

  • Poole, D.C and Musch, T.I. (2000) Pulmonary and Peripheral Gas Exchange During Exercise. In: J. Roca, R. Rodriguez-Roisin and P.D. Wagner (Eds.), Pulmonary and Peripheral Gas Exchange in Health and Disease. Marcel Dekker, Inc., New York, pp. 469–523.

    Google Scholar 

  • Roughton, F.J.W. and Forster, R.E. (1957) Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. Journal of Applied Physiology 11, 290–302.

    CAS  PubMed  Google Scholar 

  • Tawhai, M.H. and Hunter, P.J. (2001) Characterising respiratory airway gas mixing using a lumped parameter model of the pulmonary acinus. Respiration Physiology 127(2–3), 241–248.

    Article  CAS  PubMed  Google Scholar 

  • Weibel, E.R. (1963) Morphometry of the Human Lung. Springer-Verlag, Berlin.

    Google Scholar 

  • Weibel, E.R (1997) Design and morphometry of the pulmonary gas exchanger. In: R.G. Crystal, J.B. West, E.R. Weibel, and P.J. Barnes (Eds.), The Lung; Scientific Foundations ( nd edition). Lippincott-Raven Publishers, Philadelphia, pp. 1147–1157.

    Google Scholar 

  • West, J.B. (2000) Respiratory Physiology: The Essentials (6 th edition). Lippincott Williams & Wilkins, Philadelphia, PA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Swan, A., Hunter, P., Tawhai, M. (2008). Pulmonary Gas Exchange in Anatomically-Based Models of the Lung. In: Poulin, M.J., Wilson, R.J.A. (eds) Integration in Respiratory Control. Advances in Experimental Medicine and Biology, vol 605. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73693-8_32

Download citation

Publish with us

Policies and ethics