Advertisement

A dp/dt Method to Assess Dynamic Properties of Lung Mechanoreceptors

  • C. E. Schweitzer
  • J. L. Johnson
  • C. A. Escudero
  • S. G. Vincent
  • J. T. Fisher
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 605)

The activity of airway slowly adapting mechanoreceptors (SARs) reflects the presence of both a static and dynamic component. The dynamic response is typically assessed by the adaptation index; however, this is an indirect reflection of the more appropriate physiological stimulus, the rate of change of inflation pressure (dp/dt). We describe a method in which measurement of receptor discharge exceeding the SAR static response is used to measure dynamic discharge and dynamic sensitivity of lung mechanoreceptors. Repeat inflations with varying dp/dt illustrate the method for a SAR in which the dynamic sensitivity is inversely related to dp/dt and the initial “onset” discharge is highly dp/dt sensitive. The method may provide new insight into the classification and behaviour of lung mechanoreceptors.

Keywords

Inflation Pressure Discharge Frequency Target Pressure Stretch Receptor Adaptation Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett, D., Jr., Sant’Ambrogio, G. and Wise, J.C.M. (1976) Transduction properties of tracheal stretch receptors. J. Physiol. (Lond.) 258, 421–432.Google Scholar
  2. Bartlett, D., Jr. and St.John, W.M. (1979) Adaptation of pulmonary stretch receptors in different mammalian species. Respiration Physiology 37, 303–312.CrossRefPubMedGoogle Scholar
  3. Farber, J.P., Fisher, J.T., and Sant’Ambrogio, G. (1983) Distribution and discharge properties of airway receptors in the opossum, Dedelphis marsupialis. Am. J. Physiol. 245, R209–R214.PubMedGoogle Scholar
  4. Fisher, J.T., Schweitzer, C.E., Weichselbaum, M. and Sparrow, M.P. (2003) Ontogeny of upper and lower airway innervation. In: O.P. Mathew (Ed.) Respiratory Control and Disorders in the Newborn, Marcel Dekker, Inc., New York, pp. 39–81.Google Scholar
  5. Mortola, J.P. and Mortola, S.A. (1980) Tracheal slowly adapting stretch receptors: theoretical models. J. Theor. Biol. 83, 313–320.CrossRefPubMedGoogle Scholar
  6. Pack, A.I., Ogilvie, M.D., Davies, R.O. and Galante, R.J. (1986) Responses of pulmonary stretch receptors during ramp inflations of the lung. J. Appl. Physiol. 61, 344–352.PubMedGoogle Scholar
  7. Sant’Ambrogio, F.B., Fisher, J.T. and Sant’Ambrogio, G. (1983) Adaptation of airway stretch receptors in newborn and adult dogs. Respiration Physiology 52, 361–369.CrossRefPubMedGoogle Scholar
  8. Sant’Ambrogio, G. (1982) Information arising from the tracheobronchial tree in mammals. Physiol.Rev. 62, 531–539.PubMedGoogle Scholar
  9. Tsubone, H. (1986) Characteristics of vagal afferent activity in rats: three types of pulmonary receptors responding to collapse, inflation, and deflation of the lung. Exp. Neurol. 92, 541–552.CrossRefPubMedGoogle Scholar
  10. Widdicombe, J.G. (1954) Receptors in the trachea and bronchi of the cat. J. Physiol. 123, 71–104.PubMedGoogle Scholar
  11. Yu, J. (2000) Spectrum of myelinated pulmonary afferents. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R2142–R2148.PubMedGoogle Scholar
  12. Yu, J. (2005). Airway mechanosensors. Respir. Physiol. Neurobiol. 148, 217–243.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • C. E. Schweitzer
    • 1
    • 2
  • J. L. Johnson
    • 2
  • C. A. Escudero
    • 2
  • S. G. Vincent
    • 2
  • J. T. Fisher
    • 2
  1. 1.Laboratoire de Physiologie, Faculté de MédecineUniversité Henri PoincaréVandoeuvre les NancyFrance
  2. 2.Department of Physiology, Medicine & PediatricsQueen's UniversityKingstonCanada

Personalised recommendations