Advertisement

Possible Roles of the Weakly Inward Rectifying K+ Channel Kir4.1 (KCNJ10) in the Pre-Bötzinger Complex

  • Nestoras Papadopoulos
  • Stefan M. Winter
  • Kai Härte
  • Melanie Kaiser
  • Clemens Neusch
  • Swen Hülsmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 605)

Rhythmic activity of respiratory neurons is dependent on the clearance of neurotransmitter by astrocytes. Astrocytes should also be involved in the permanent and rapid clearance of extracellular ions. We analyzed the expression of the weakly inwardly rectifying K+ channel Kir4.1 (KCNJ10) in the respiratory network and studied the possible functions for neuronal activity in the pre-Bötzinger complex.

Keywords

Rhythmic Activity Channel Subunit EGFP Expression Double Transgenic Mouse Rectify Potassium Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gomeza, J. et al. (2003) Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron 40(4), 785–796.CrossRefPubMedGoogle Scholar
  2. Kofuji, P. and Newman, E.A. (2004) Potassium buffering in the central nervous system. Neuroscience 129(4), 1045–1056.CrossRefPubMedGoogle Scholar
  3. Smith, J.C. et al. (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254(5032), 726–729.CrossRefPubMedGoogle Scholar
  4. Richter, D.W. and Spyer, K.M. (2001) Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models. Trends Neurosci. 24(8), 464–472.CrossRefPubMedGoogle Scholar
  5. Takumi, T. et al. (1995) A novel ATP-dependent inward rectifier potassium channel expressed predominantly in glial cells. J. Biol. Chem. 270(27), 16339–16346.CrossRefPubMedGoogle Scholar
  6. Bredt, D.S. et al. (1995) Cloning and expression of two brain-specific inwardly rectifying potassium channels. Proc. Natl. Acad. Sci. USA 92(15), 6753–6757.CrossRefPubMedGoogle Scholar
  7. Wu, J. et al. (2004) Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats. J. Membr. Biol. 197(3), 179–191.CrossRefPubMedGoogle Scholar
  8. Kofuji, P. et al. (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J. Neurosci. 20(15), 5733–5740.PubMedGoogle Scholar
  9. Nolte, C. et al. (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33(1), 72–86.CrossRefPubMedGoogle Scholar
  10. Neusch, C. et al. (2006) Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation. J. Neurophysiol. 95(3), 1843–1852.CrossRefPubMedGoogle Scholar
  11. Neusch, C. et al. (2001) Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J. Neurosci. 21(15), 5429–5438.PubMedGoogle Scholar
  12. Grass, D. et al. (2004) Diversity of functional astroglial properties in the respiratory network. J. Neurosci. 24(6), 1358–1365.CrossRefPubMedGoogle Scholar
  13. D’Ambrosio, R., Gordon, D.S. and Winn, H.R. (2002) Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracellular K(+) in rat hippocampus. J. Neurophysiol. 87(1), 87–102.PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Nestoras Papadopoulos
    • 1
  • Stefan M. Winter
    • 1
  • Kai Härte
    • 1
  • Melanie Kaiser
    • 2
  • Clemens Neusch
    • 2
  • Swen Hülsmann
    • 1
  1. 1.Department of Neuro- and Sensory PhysiologyGeorg-August-University GöttingenGöttingenGermany
  2. 2.Department of NeurologyGeorg-August-University GöttingenGöttingenGermany

Personalised recommendations