Skip to main content

What Role Do Pacemakers Play in the Generation of Respiratory Rhythm?

  • Chapter
Integration in Respiratory Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 605))

The pacemaker hypothesis that specialized neurons with conditional oscillatory- bursting properties are obligatory for respiratory rhythm generation in vitro has gained widespread acceptance, despite lack of direct proof. Here we critique the pacemaker hypothesis and provide an alternative explanation for rhythmogenesis based on emergent network properties. Pacemaker neurons in the preBötC depend on either persistent Na+ current I nap or Ca2+-activated nonspecific cationic current (I can ). Activity in slice preparations and synaptically- isolated pacemaker neurons undergo similar frequency modulation by perturbations including hypoxia and changes in external K+. These data have been used to argue that pacemaker cells must be rhythmogenic, but may simply reflect the action of these perturbations on intrinsic membrane properties throughout the preBötC and does not constitute proof that pacemakers necessarily drive the rhythm with synaptic coupling in place. Likewise, bath-applied drugs, such as riluzole (RIL) and flufenamic acid (FFA), attenuate I nap and I can , respectively, throughout the slice. Thus, when these drugs stop the rhythm, a widespread depression of excitability is likely the underlying cause, not selective blockade of bursting-pacemaker activity. We propose that rhythmogenesis is an emergent network property, wherein recurrent synaptic excitation initiates a positive feedback cycle among interneurons and that intrinsic currents like I can and I nap promote inspiratory burst generation by augmenting synaptic excitation in the context of network activity. In this group-pacemaker framework, individual pacemaker neurons can be embedded but play the same role as every other network constituent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brockhaus, J. and Ballanyi, K. (1998) Synaptic inhibition in the isolated respiratory network of neonatal rats. Eur. J. Neurosci. 10, 3823–3839.

    Article  CAS  PubMed  Google Scholar 

  • Butera, R.J., Jr., Rinzel, J. and Smith J.C. (1999) Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol. 82, 382–397.

    PubMed  Google Scholar 

  • Darbon, P., Scicluna, L., Tscherter, A. and Streit, J. (2002) Mechanisms controlling bursting activity induced by disinhibition in spinal cord networks. Eur. J. Neurosci. 15, 671–683.

    Article  PubMed  Google Scholar 

  • Del Negro, C.A., Johnson, S.M., Butera, R.J. and Smith J.C. (2001) Models of respiratory rhythm generation in the pre-Bötzinger complex. III. Experimental tests of model predictions. J. Neurophysiol. 86, 59–74.

    PubMed  Google Scholar 

  • Del Negro, C.A., Koshiya, N., Butera, R.J. Jr. and Smith J.C. (2002a) Persistent sodium current, membrane properties and bursting behavior of pre-Botzinger complex inspiratory neurons in vitro. J. Neurophysiol. 88, 2242–2250.

    Article  PubMed  Google Scholar 

  • Del Negro, C.A., Morgado-Valle, C. and Feldman, J.L. (2002b) Respiratory rhythm: an emergent network property? Neuron 34, 821–830.

    Article  PubMed  Google Scholar 

  • Del Negro, C.A., Morgado-Valle, C., Hayes, J.A., Mackay, D.D., Pace, R.W., Crowder, E.A. and Feldman, J.L. (2005) Sodium and calcium dependent pacemaker neurons and respiratory rhythm generation. J. Neurosci. 25, 446–453.

    Article  PubMed  Google Scholar 

  • Feldman, J.L. and Smith J.C. (1989) Cellular mechanisms underlying modulation of breathing pattern in mammals. Ann. N.Y. Acad. Sci. 563, 114–130.

    Article  CAS  PubMed  Google Scholar 

  • Koshiya, N. and Smith, J.C. (1999) Neuronal pacemaker for breathing visualized in vitro. Nature 400, 360–363.

    Article  CAS  PubMed  Google Scholar 

  • Kosmidis, E.K., Pierrefiche, O. and Vibert J.F. (2004) Respiratory-like rhythmic activity can be produced by an excitatory network of non-pacemaker neuron models. J. Neurophysiol. 92, 686–699.

    Article  PubMed  Google Scholar 

  • Pace, R.W., MacKay, D.D., Feldman, J.L. and Del Negro, C.A. (2007a) Inspiratory bursts in the preBötzinger complex depend on a calcium-activated nonspecific cationic current linked to glutamate receptors. J. Physiol, in press.

    Google Scholar 

  • Pace, R.W., MacKay, D.D., Feldman, J.L. and Del Negro, C.A. (2007b) Role of persistent sodium current in mouse preBötzinger complex neurons and respiratory rhythm generation. J. Physiol. 580(2):485–496.

    Article  CAS  PubMed  Google Scholar 

  • Pena, F., Parkis, M.A., Tryba, A.K. and Ramirez, J.M. (2004) Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43, 105–117.

    Article  CAS  PubMed  Google Scholar 

  • Ptak, K., Zummo, G.G., Alheid, G.F., Tkatch, T., Surmeier, D.J. and McCrimmon, D.R. (2005) Sodium currents in medullary neurons isolated from the pre-Botzinger complex region. J. Neurosci. 25, 5159–5170.

    Article  CAS  PubMed  Google Scholar 

  • Rekling, J.C., Champagnat, J. and Denavit-Saubie, M. (1996) Electroresponsive properties and membrane potential trajectories of three types of inspiratory neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 75, 795–810.

    CAS  PubMed  Google Scholar 

  • Rekling, J.C. and Feldman, J.L. (1998) Prebötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu. Rev. Physiol. 60, 385–405.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J.C., Butera, R.J., Koshiya, N., Del Negro, C., Wilson, C.G. and Johnson, S.M. (2000) Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model. Respir. Physiol. 122, 131–147.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W. and Feldman, J.L. (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254, 726–729.

    Article  CAS  PubMed  Google Scholar 

  • Thoby-Brisson, M. and Ramirez, J.M. (2001) Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice. J. Neurophysiol. 86, 104–112.

    CAS  PubMed  Google Scholar 

  • Thoby-Brisson, M. and Ramirez, J.M. (2000) Role of inspiratory pacemaker neurons in mediating the hypoxic response of the respiratory network in vitro. J. Neurosci. 20, 5858–5866.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Negro, C.A.D., Pace, R.W., Hayes, J.A. (2008). What Role Do Pacemakers Play in the Generation of Respiratory Rhythm?. In: Poulin, M.J., Wilson, R.J.A. (eds) Integration in Respiratory Control. Advances in Experimental Medicine and Biology, vol 605. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73693-8_15

Download citation

Publish with us

Policies and ethics