Advertisement

Intravenous Endothelin-1 and Ventilatory Sensitivity to Hypoxia in Humans

  • Nick P. Talbot
  • George M. Balanos
  • Peter A. Robbins
  • Keith L Dorrington
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 605)

The effects of intravenous endothelin-1 (ET-1) on the ventilatory response to hypoxia were studied in healthy humans. Nine volunteers were each exposed twice to 4 hr eucapnic hypoxia. They received a continuous infusion of ET-1 during the ET-1 protocol and an infusion of saline during the control protocol. Plasma ET-1 levels and an index of ventilation were measured regularly. Hypoxia caused a rise in plasma ET-1 in the control protocol. Hypoxia also caused the index of ventilation to increase in both protocols, and this increase was greater in the ET-1 protocol than in the control protocol. These results are consistent with the hypothesis that ET-1 plays a role in controlling the ventilatory response to hypoxia in man.

Keywords

Carotid Body Ventilatory Response Control Protocol Chronic Hypoxia Sustained Hypoxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, J., He, L., Dinger, B., Stensaas, L. and Fidone, S. (2002). Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am. J. Physiol. 282, L1314–L1323.Google Scholar
  2. Chen, J., He, L., Dinger, B. and Fidone, S. (2000) Cellular mechanisms involved in rabbit carotid body excitation elicited by endothelin peptides. Resp. Physiol. 121, 13–23.CrossRefGoogle Scholar
  3. Howard, L.S. and Robbins, P.A. (1995). Alterations in respiratory control during 8 hr of isocapnic and poikilocapnic hypoxia in humans. J. Appl. Physiol. 78, 1098–1107.PubMedGoogle Scholar
  4. Howard, L.S., Barson, R.A, Howse, B.P., McGill, T.R, McIntyre, M.E., O’Connor, D.F. and Robbins, P.A. (1995). Chamber for controlling end-tidal gas tensions over sustained periods in humans. J. Appl. Physiol. 78, 1088–1091.CrossRefPubMedGoogle Scholar
  5. Kline, D.D., Peng, Y., Manalo, D.J., Semenza, G.L. and Prabhaker, N.R. (2002) Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1y. PNAS 99, 821–826.CrossRefPubMedGoogle Scholar
  6. Smith, T.G., Brooks, J.T., Balanos, G.M., Lappin, T.R., Layton, D.M., Leedham, D.L., Liu, C., Maxwell, P.H., McMullin, M.F., McNamara, C.J., Percy, M.L., Pugh, C.W., Ratcliffe, P.J., Talbot, N.P., Treacy, M. and Robbins, P.A. (2006) Mutation of von Hippel-Lindau tumour suppressor and human cardiopulmonary physiology. PLoS Med. 3(7), e290.CrossRefPubMedGoogle Scholar
  7. Yamashita, K., Discher, D.J, Hu, J. Bishopric, N.H. and Webster, K.A. (2001) Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2 and p300/CBP. J. Biol. Chem. 276, 12645–12653.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Nick P. Talbot
    • 1
  • George M. Balanos
    • 2
  • Peter A. Robbins
    • 1
  • Keith L Dorrington
    • 1
  1. 1.Department of Physiology, Anatomy and GeneticsUniversity of OxfordUK
  2. 2.School of Sport and Exercise SciencesUniversity of BirminghamUK

Personalised recommendations