Advertisement

History of Measuring O2 and CO2 Responses

  • John W. Severinghaus
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 605)

Quantitative analysis of the chemical interactions of CO2 and O2 on ventilation from early 20th century to the present start with the amazingly steep CO2 response found by Haldane and his pupils, proceed through discovery of the prime role of the H+ ion and the discovery of carotid body chemoreception. The interaction of central and peripheral drives and changes with time and acute and chronic altitude exposure are still under investigation.

Keywords

Carotid Body Ventilatory Response Hypoxic Ventilatory Response Hyperbolic Asymptote Carotid Body Chemoreception 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chiodi, H. (1957) Respiratory adaptations to chronic high altitude hypoxia. J. Appl. Physiol. 10, 81–87.PubMedGoogle Scholar
  2. Crawford R.D. and Severinghaus J.W (1978) CSF pH and ventilatory acclimatization to altitude. J. Appl. Physiol. 45, 275–283.PubMedGoogle Scholar
  3. Dempsey, J.A., Forster, H.V., Bisgard, G.E., Chosy, L.W., Hanson, P.G., Kiorpes, A.L. and Pelligrino, D.A. (1979) Role of cerebrospinal fluid [H+] in ventilatory deacclimatization from chronic hypoxia. J. Clin. Invest. 64, 199–205.CrossRefPubMedGoogle Scholar
  4. Kellogg, R.H. (1981) Historical perspectives. In: T. F. Hornbein, (Ed.), Regulation of Breathing, Vol. 17 Part 1, in C. Lenfant, (Sr. Ed.), Lung Biology in Health and Disease, Marcel Dekker, New York, pp. 3–66.Google Scholar
  5. Leusen, I.R. (1954) Chemosensitivity of the respiratory center influence of changes in the H+ and total buffer concentrations in the cerebral ventricles on respiration. Am. J. Physiol. 176, 45–51.PubMedGoogle Scholar
  6. Loeschcke, H.H., Koepchen, H.P. and Gertz, K.H. (1958) Effect of hydrogen ion concentration and carbon dioxide pressure in the cerebrospinal fluid on respiration. German. Pflügers Arch. 266, 569–585.CrossRefGoogle Scholar
  7. Mitchell, R.A., Loeschcke, H.H., Severinghaus, J.W. and Massion, W.H. (1963) Respiratory responses mediated through superficial chemosensitive areas on the medulla. J. Appl. Physiol. 18, 523–533.Google Scholar
  8. Rebuck, A.S. and Campbell, E.J. (1974) A clinical method for assessing the ventilatory response to hypoxia. Am. Rev. Respir. Dis. 109, 345–350.PubMedGoogle Scholar
  9. Ren, X., Fatemian, M. and Robbins, P.A. (2000) Changes in respiratory control in humans induced by 8 hr of hyperoxia. J. Appl. Physiol. 89, 655–662.PubMedGoogle Scholar
  10. Riley, R.L. and Houston, C.S. (1951) Composition of alveolar air and volume of pulmonary ventilation during long exposure to high altitude. J. Appl. Physiol. 3, 526–534.PubMedGoogle Scholar
  11. Rivera-Ch, M., Gamboa, A., Leon-Velarde, F., Palacios, J.A., O’Connor, D.F. and Robbins, P.A. (2003) High-altitude natives living at sea level acclimatize to high altitude like sea level natives. J. Appl. Physiol. 94, 1263–1268.PubMedGoogle Scholar
  12. Sato, M., Severinghaus, J.W. and Bickler, P.E. (1994) Time course of augmentation and depression of hypoxic ventilatory responses at altitude. J. Appl. Physiol. 76, 313–316.Google Scholar
  13. Schlaefke, M.E., See, W.R. and Loeschcke, H.H. (1970) Ventilatory response to alterations of H+ ion concentration in small areas of the ventral medullary surface. Respir. Physiol. 10, 198–212.CrossRefPubMedGoogle Scholar
  14. Severinghaus, J.W., Bainton, C.R. and Carcelen, A. (1966) Respiratory insensitivity to hypoxia in chronically hypoxic man. Resp. Physiol. 1, 308–334.CrossRefGoogle Scholar
  15. Severinghaus, J.W. and Carcelen, A.B. (1964) Cerebrospinal fluid in man native to high altitude. J. Appl. Physiol. 19, 319–321.PubMedGoogle Scholar
  16. Severinghaus, J.W., Mitchell, R.A., Richardson, B.W. and Singer, M.M. (1963) Respiratory control at high altitude suggesting active transport regulation of CSF pH. J. Appl. Physiol. 18, 1155–1166.PubMedGoogle Scholar
  17. Sørensen, S.C. and Severinghaus, J.W. (1968) Irreversible respiratory insensitivity to acute hypoxia in man born at high altitude. J. Appl. Physiol. 25, 217–220.PubMedGoogle Scholar
  18. Steinbeck, C.D. and Poulin, M.J. (2007) Ventilatory responses to isocapnic and poikilcapnic hypoxia in humans. Respiratory Physiology and Neurobiology 155, 104–113.CrossRefGoogle Scholar
  19. Weil, J.V., Byrne-Quinn, E., Sodal, I.E., Friesen, W.O., Underhill, B., Filley, G.F. and Grover, R.F. (1970) Hypoxic ventilatory drive in normal man. J. Clin. Invest. 49, 1061–1072.CrossRefPubMedGoogle Scholar
  20. Xu, F., Spellman, M.J., Jr., Sato, M., Baumgartner, J.E., Ciricillo, S.F. and Severinghaus, J.W. (1991) Anomalous hypoxic acidification of medullary ventral surface. J. Appl. Physiol. 71, 2211–2217.PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • John W. Severinghaus
    • 1
  1. 1.Department of AnesthesiaUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations