On-chip Pseudorandom Testing for Linear and Nonlinear MEMS

  • Achraf Dhayni
  • Salvador Mir
  • Libor Rufer
  • Ahcène Bounceur
Part of the IFIP International Federation for Information Proc book series (IFIPAICT, volume 240)

In this paper we study the use of pseudorandom test techniques for linear and nonlinear devices, in particular Micro Electro Mechanical Systems (MEMS). These test techniques lead to practical Built- In-Self-Test techniques (BIST). We will first present the pseudorandom test technique for Linear Time Invariant (LTI) systems. Next, we will illustrate and evaluate the application of these techniques for weakly nonlinear, purely nonlinear and strongly nonlinear devices.


Impulse Response Volterra Kernel Linear Time Invariant Hammerstein Model Nonlinear Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.W. Beegle, R.W. Brocato, and R.W. Grant, IMEMS Accelerometer Testing -Test Laboratory Development and Usage, Proceedings of International Test Conference, September 1999, pp. 338-347.Google Scholar
  2. 2.
    T. Maudie, A. Hardt, R. Nielsen, D. Stanerson, R. Bleschke, and M. Miller, MEMS Manufacturing Testing: An Accelerometer Case Study, Proceedings of International Test Conference, September 2003, pp. 843-849.Google Scholar
  3. 3.
    S. Sunter and N. Nagi, Test metrics for analog parametric faults, Proceedings of VTS, 1999, pp. 226-234.Google Scholar
  4. 4.
    B. Charlot, S. Mir, F. Parrain, and B. Courtois, Generation of Electrically In-duced Stimuli for MEMS Self-test, Journal of Electronic Testing: Theory and Applications, December 2001, vol. 17, no. 6, pp. 459-470.CrossRefGoogle Scholar
  5. 5.
    C.Y. Pan and K.T. Cheng, Pseudorandom Testing for Mixed-signals Circuits, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-tems, 1997, vol. 16, no. 10, pp. 1173-1185.CrossRefGoogle Scholar
  6. 6.
    P.S.A. Evans, M.A. Al-Qutayri, and P.R. Shepherd, A Novel Technique for Testing Mixed-Signal ICs, Proceedings of European Test Symposium, 1991, pp. 301-306.Google Scholar
  7. 7.
    F. Corsi, C. Marzocca, and G. Matarrese, Defining a BIST-oriented Signature for Mixed-signal Devices, IEEE Proceedings of Southwest Symposium on Mixed-Signal Design, 2003, pp. 202-207.Google Scholar
  8. 8.
    H.V. Allen, S.C. Terry, and D.W. de Bruin, Self-Testable Accelerometer Systems, Proceeding of Micro Electro Mechanical Systems, 1989, pp. 113-115.Google Scholar
  9. 9.
    M. Aikele, K. Bauer,W. Ficker, F. Neubauer, U. Prechtel, J. Schalk, and H. Seidel, Resonant Accelerometer with Self-test, Sensors and Actuators A, Auguest 2001, vol. 92, no. 1-3, pp. 161-167.Google Scholar
  10. 10.
    R. Puers and S. Reyntjens, RASTAReal-Acceleration-for-Self-Test Accelerome-ter: A New Concept for Self-testing Accelerometers, Sensors and Actuators A, April 2002, vol. 97-98, pp. 359-368.CrossRefGoogle Scholar
  11. 11.
    L. Zimmermann, J.P. Ebersohl, F. Le Hung, J.P. Berry, F. Baillieu, P. Rey, B. Diem, S. Renard, and P. Caillat, Airbag application: a microsystem including a silicon capacitive accelerometer, CMOS switched capacitor electronics and true self-test capability, Sensors and Actuators A, 1995, vol. A 46, no. 1-3, pp. 190-195.CrossRefGoogle Scholar
  12. 12.
    V. Beroulle, Y. Bertrand, L. Latorre, and P. Nouet, Test and Testability of a Monolithic MEMS for Magnetic Field Sensing, Journal of Electronic Testing, Theory and Applications, October 2001, pp. 439-450.Google Scholar
  13. 13.
    N. Deb and R.D. Blanton, Built-In Self-Test of CMOS-MEMS Accelerometers, Proceedings of International Test Conference, October 2002, pp. 1075-1084.Google Scholar
  14. 14.
    X. Xiong, Y.L. Wu, and, W.B. Jone, A Dual-Mode Built-In Self-Test Technique for Capacitive MEMS Devices, Proceedings of VLSI Test Symposium, April 2004, pp. 148-153.Google Scholar
  15. 15.
    L. Rufer, S. Mir, E. Simeu, and C. Domingues, On-chip Pseudorandom MEMS Testing, Journal of Electronic Testing: Theory and Application, 2005, pp. 233-241.Google Scholar
  16. 16.
    A. Dhayni, S. Mir, and L. Rufer, MEMS Built-In-Self-Test Using MLS, IEEE Proceedings of 9th European Test Symposium, 2004, pp. 66-71.Google Scholar
  17. 17.
  18. 18.
    A. Dhayni, S. Mir, L. Rufer, and A. Bounceur, Nonlinearity effects on MEMS on-chip pseudorandom testing, Proceedings of International Mixed-Signals Testing Workshop, Cannes, France, June 2005, pp. 224-233.Google Scholar
  19. 19.
    S. Müller and P. Massarani, Transfer Function Measurement with Sweeps, Jour-nal of Audio Engineering Society, 2001, vol. 49, no. 6, pp. 443-471.Google Scholar
  20. 20.
    A. Farina, Simultaneous Measurement of Impulse Response and Distortion with a Swept-sine Technique, presented at the 108th Convention of Audio Engineering Society, Journal of Audio Engineering Society, vol. 48, pp. 350, preprint 5093.Google Scholar
  21. 21.
    C. Dunn and M.O. Hawksford, Distortion Immunity of MLS-Derived Impulse Response Measurements, Journal of Audio Engineering Society, 1993, vol. 41, no. 5, pp. 314-335.Google Scholar
  22. 22.
    M. Reed and M. Hawksford, Identification of Discrete Volterra Series Using Maximum Length Sequences, IEE Proceedings on Circuits, Devices and Systems, 1996, pp. 241-248.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Achraf Dhayni
    • 1
  • Salvador Mir
    • 1
  • Libor Rufer
    • 1
  • Ahcène Bounceur
    • 1
  1. 1.Techniques of Informatics and Microelectronics for Computer Architecture Laboratory (TIMA)France

Personalised recommendations