A Novel MicroPhotonic Structure for Optical Header Recognition

  • Muhsen Aljada
  • Kamal Alameh
  • Adam Osseiran
  • Khalid Al-Begain
Conference paper
Part of the IFIP International Federation for Information Proc book series (IFIPAICT, volume 240)

In this paper, we propose and demonstrate a new MicroPhotonic structure for optical packet header recognition based on the integration of an optical cavity, optical components and a photoreceiver array. The structure is inherently immune to optical interference thereby routing an optical header within optical cavities to different photo receiver elements to generate the autocorrelation function, and hence the recognition of the header using simple microelectronic circuits. The proof-of-concept of the proposed MicroPhotonic optical header recognition structure is analysed and experimentally demonstrated, and results show excellent agreement between measurements and theory.


Fiber Bragg Grating Semiconductor Optical Amplifier Optical Cavity Optical Packet Diffractive Optical Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Huang, and I. Andonovic, Coherent Optical Pulse CDMA Systems Based On Coherent Correlation Detection, IEEE J. Trans. Commun. 47 (2), 261-271 (1999).CrossRefGoogle Scholar
  2. 2.
    R. Clavero, J.M. Martinez, F. Ramos, and J. Marti, All-Optical Packet Routing Scheme for Optical Label-Swapping Networks, OSA Opt. Express 12 (18), 4326-4332 (2004).CrossRefGoogle Scholar
  3. 3.
    M.C. Hauer, J.E. McGeehan, S. Kumar, J.D. Touch, J. Bannister, E.R. Lyons, C.H. Lin, A.A. Au, H.P. Lee, D.S. Starodubov, and A.E. Willner, Optically Assisted Internet Routing Using Arrays of Novel Dynamically Reconfigurable FBG-Based Correlators, J. Lightwave Technol. 21(11), 2765-2778 (2003).CrossRefGoogle Scholar
  4. 4.
    D.J Blumenthal, Optical Packet Switching, in Proc. IEEE/LEOS 2, 910-912 (2004).Google Scholar
  5. 5.
    P. Parolari, L. Marazzi, D. Rossetti, G. Maier, and M. Martinelli, Coherent-to-Incoherent Light Conversion for Optical Correlators, J. Lightwave Technol. 18(9), 1284 -1288 (2000).CrossRefGoogle Scholar
  6. 6.
    J.D. Shin, Y.M. Jeon, and C.S. Kang, Fiber-Optic Matched Filters With Metal Films Deposited on Fiber Delay-Line Ends for Optical Packet Address Detection, IEEE Photon. Tech. Lett. 8(7), 941-943 (1996).CrossRefGoogle Scholar
  7. 7.
    J.D. Shin, M.Y. Jeon, E.Lee, 10 Gb/s Optical Packet Header Recognition Using A New Fiber-Optic Matched Filter, in Proc. CLEO/Pacific Rim'95, 8 (1995).Google Scholar
  8. 8.
    X.A. Shen, Y.S. Bai, R. Kachru, Demonstration of Optical ATM Header Decoding By Spectroholographic Filtering, in Proc. CLEO '96, 222-223 (1996).Google Scholar
  9. 9.
    D. Cotter, J.K. Lucek, M. Shabeer, K. Smith, D.C. Roger, D. Nesset, and P. Gunning, Self-Routing of 100 Gbit/S Packets Using 6 Bit Keyword Address Recognition, Electronics Lett. 31(17), 1475-1476 (1995).CrossRefGoogle Scholar
  10. 10.
    F. Forghieri, A. Bononi, P.R. Prucnal, Novel Packet Architecture for All-Optical Ultrafast Packet-Switching Networks, IEEE Electronics lett. 28(25), 2289-2291(1992).CrossRefGoogle Scholar
  11. 11.
    I. Glesk, J.P. Solokoff, and P.R. Prucnal, All-Optical Address Recognition And Self-Routing In A 250 Gbit/S Packet-Switched Network, Electronics Lett. 30(16), 1322-1323 (1994).CrossRefGoogle Scholar
  12. 12.
    D.F. Geraghty, J. Castro, B. West, and S. Honkanen, All-Optical Packet Header Recognition Integrated Optic Chip, in Proc. IEEE-LEOS'03 2, 752-753 (2003).Google Scholar
  13. 13.
    K. Chan, F. Tong, C.K. Chan, L.K. Chen, and W. hung, An All-Optical Packet Header Recognition Scheme for Self-Routing Packet Networks, in Proc. OFC, 284-285 (2002).Google Scholar
  14. 14.
    R. Takahashi, and H. Suzuki, 1-Tb/s 16-b All-Optical Serial-To-Parallel Conversion Using a Surface-Reflection Optical Switch, IEEE photon. Technol. Lett. 15(2), 287-289, 2003.CrossRefGoogle Scholar
  15. 15.
    R. Takahashi, T. Nakahara, H. Takenouchi, and H. Suzuki, 40-Gbit/s Label Recognition and 1x4 Self-Routing Using Self-Serial-to-Parallel Conversion, IEEE Photon. Technol. Lett. 16(2), 692-694 (2004).CrossRefGoogle Scholar
  16. 16.
    O. Boyraz, Y. Han, A. Nuruzzaman, and B. Jalali, Time Stretch Optical Header Recognition, in Proc. IEEE-LEOS'03 2, 543-544 (2003).Google Scholar
  17. 17.
    R. Zheng, M. Aljada, Z. Wang, and K. Alameh, An Opto-VLSI Correlator for Optical Header Recognition, in proc. OFC'06, paper OThS4, (2006).Google Scholar
  18. 18.
    D.B. Hunter and R.A. Minasian, Programmable High-Speed Optical Code Recognition Using Fibre Bragg Grating Arrays, Electronics Lett. 35(5), 412-414 (1999).Google Scholar
  19. 19.
    J.E. Mcgeehan, M.C. Hauer, And A.E. Willner, Optical Header Recognition Using Fiber Bragg Grating Correlators, IEEE LEOS Newsletter 16(4), 29-32 (2002).Google Scholar
  20. 20.
    M.C. Cardakli, S. Lee, A.E. Willner, V. Grubsky, D. Starodubov, and J. Feinberg, All-Optical Packet Header Recognition And Switching In A Reconfigurable Network Using Fiber Bragg Grating For Time-To-Wavelength Mapping And Decoding, in Proc. OFC/IOOC'99 3, 171-173 (1999).Google Scholar
  21. 21.
    M.C. Cardakli, S. Lee, A.E. Willner, V. Grubsky, D. Starodubov, and J. Feinberg, Reconfigurable Optical Packet Header Recognition and Routing Using Time-To-Wavelength Mapping and Tunable Fiber Bragg Gratings for Correlation Decoding, IEEE Photon. Technol. Lett. 12(5), 552-554 (2000). A Novel MicroPhotonic Structure for Optical Header Recognition 219 CrossRefGoogle Scholar
  22. 22.
    D. Gurkan, M.C. Hauer, A.B. Sahin, Z. Pan, S. Lee, and A.E. Willner, Demonstration Of Multi-Wave All-Optical Header Recognition Using PPLN and Optical Correletors, in Pro c. 27 ECOC'01 3, 312-313 (2001).Google Scholar
  23. 23.
    A.E. Willner, All-Optical Packet-Header-Recognition Techniques, in proc. IEEE/LEOS 1, 47-48 (2002).Google Scholar
  24. 24.
    M.C. Cardakli, D. Gurkan, S.A. Havstad, and A.E. Willner, Variable-Bit-Rate Header Recognition for Reconfigurable Networks Using Tunable Fiber-Bragg-Gratings As Optical Correletor, in Proc. OFC 1, 213 -215 (2000).Google Scholar
  25. 25.
    A.E. Willner, All-Optical Signal Processing For Implementing Network Switching Function, in Proc. IEEE/LEOS'02, TuC1-9-TuC1-10, (2002).Google Scholar
  26. 26.
    J.E. McGeehan, M.C. Hauer, A.B. Sahin, and A.E. Willner, Multiwavelength-Channel Header Recognition for Reconfigurable WDM Networks Using Optical Correlators Based on Sampled Fiber Bragg Gratings, IEEE Photon. Technol. Lett. 15 (10), 1464-1466 (2003).CrossRefGoogle Scholar
  27. 27.
    G.G. Finn, S. Hotz, and C. Rogers, Method And Networking Interface Logic For Providing Embedded Checksums, U.S. Patent 5 826 032, (1998).Google Scholar
  28. 28.
    J.E. McGeehan, S. Kumar, J. Bannister, J. Touch, and A.E. Willner, Optical Time-To-Live Decrementing And Subsequent Dropping Of An Optical Packet, in Proc.OFC'03 2, 798 -801 (2003).Google Scholar
  29. 29.
    J.E. McGeehan, S. Kumar, D. Gurkan, S.M.R.M. Nezam, A.E Willner, K.R. Parameswaran, M.M. Fejer, J. Bannister, J.D. Touch, All-Optical Decrementing of a Packet's Time-to-Live (TTL) Field and Subsequent Dropping of a Zero-TTL Packet, J. Lightwave Technol. 21(11), 2746-2752 (2003).CrossRefGoogle Scholar
  30. 30.
    W. Hung, K. Chan, L.K. Chen, C.K. Chan, F. Tong, A Routing Loop Control Scheme In Optical Layer For Optical Packet Networks, in Proc. OFC, 770-771 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Muhsen Aljada
    • 1
  • Kamal Alameh
    • 1
  • Adam Osseiran
    • 2
  • Khalid Al-Begain
    • 3
  1. 1.Centre for MicroPhotonic SystemsEdith Cowan UniversityJoondalupAustralia
  2. 2.National Networked TeleTest Facility, Electron Science Research InstituteEdith Cowan UniversityJoondalupAustralia
  3. 3.Mobile Computing, Communications and Networking Research Group, School of ComputingUniversity of GlamorganUK

Personalised recommendations