Monitoring and Migration of a PETSc-based Parallel Application for Medical Imaging in a Grid computing PSE

  • A. Murli
  • V. Boccia
  • L. Carracciuolo
  • L. D’Amore
  • G. Laccetti
  • M. Lapegna
Part of the IFIP The International Federation for Information Processing book series (IFIPAICT, volume 239)


In last decades, imaging techniques became central to the diagnostic process providing the medical community with a fast growing amounts of information held in images. This implies developing computational tools which allow a reliable, robust and efficient processing of data and enhanced analysis. Moreover, clinicians may have the need to explore collaborative approaches and to exchange diagnostic information from available data. A medical experiment often involves not a single approach but a set of processings that should be sometimes executed concurrently.


Execution Time Conjugate Gradient Grid Computing Parallel Algorithm Application Manager 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arnold, D., S. Agrawal, S. Blackford, S., J. Dongarra, M. Miller, K. Seymour, K. AND Sagi, K. AND Shi, Z. AND Vadhiyar, S., Users Guide to Netsolve–Univ. of Tennessee Tech. Rep. ICL-UT-02-05, 2002.Google Scholar
  2. 2.
    Aydt R., C. Mendes, D. Reed, F. Vraalsen, Specifying and Monitoring GRADS contracts,, 2001.
  3. 3.
    Balay S., K. Bushelman, W. Gropp, D. Kaushik, M. Knepley, L. Curf-man Mclnnes, B. Smith, H. Zhang, Petsc Users Manual, ANL-95/11-Revision 2.1.3, Argonne National Laboratory, 2003.Google Scholar
  4. 4.
    Berman F., To Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnson, K. Kennedy, C. Kesselman, J. Mellor-crummey, D. Reed, L. Torczon, R. Wolsky, The Grads Project: Software support for High Performance Grid Applications–Int. Journal on High Performance Applications. Vol 15 (2001), pp. 327–344.CrossRefGoogle Scholar
  5. 5.
    Bertero M., P. Bonetto, L. Carracciuolo, L. D’Amore, A. Formiconi, M. R. Guarracino, G. Laccetti, A. Murli and G. Oliva, A Grid-Based RPC System for Medical Imaging, chapter of Parallel and Distributed Scientific and Engineering Computing: Practice and Experience, (Y. Pan and L T. Yang editors), Nova Science Publishers, 2003, pp. 177-190.Google Scholar
  6. 6.
    Boccia V., P. Caruso, L. D’Amore, L. D’Amore, G. Laccetti, A. Murli, Sull’integrazione di un’applicazione basata su PETSc in ambiente di grid computing, ICAR-NA-CNR Tech. Rep. TR-04-25, 2004.Google Scholar
  7. 7.
    Boccia V., L. D’Amore, M. Guarracino, G. Laccetti, A grid enabled PSE for medical imaging: experiences on medlgrid, chapter of computer based medical systems cbms 2005, IEEE press, 2005, pp. 529-536.Google Scholar
  8. 8.
    Bonetto P., G. Comis, A.R. Formiconi, M. Guarracino, A new approach to brain imaging, based on an open and distributed environment, Proceedings of 1st Int. IEEE EMBS conference on neural engineering, 2003.Google Scholar
  9. 9.
    Carracciuolo L., L. D’Amore, A. Murli Towards a parallel component for imaging in PETSc programming environment: A case study in 3-d echocardiography, Parallel Computing 32, 2006, pp. 67-83.Google Scholar
  10. 10.
    Caruso P., G. Laccetti, M. Lapegna A performance contract system in a grid enabling component based programming environment, chapter of advances in grid computing –egc 2005 (P.M.A. Sloot et al., editors), Lecture Notes in Computer Science n. 3470, Springer, 2005, pp. 982–992. Google Scholar
  11. 11.
    Chan T. F., J. Shen, L. Vese Variational pde models in image processing, Notices of American Mathematical Society, Vol. 50 n. 1, (2003) 1426.Google Scholar
  12. 12.
    L. D’Amore L., F. Gregoretti, A. Murli, Diskless algorithm-based checkpointing in a fault tolerant medical imaging application, Conferenza simai, 2004, and firb italian national project, wp9 working note wp9-39, 2004.Google Scholar
  13. 13.
    Duff I.S., H.A. van der Vorst, Preconditioning and parallel preconditioning, in: J. Dongarra et al., Numerical Linear Algebra for High-Performance Computers (SIAM, Philadelphiapa, 1998).duff i.s., h.a. van der vorst, preconditioning and parallel preconditioning, in: j. dongarra et al., numerical linear algebra for high-performance computers (siam, philadelphia, pa, 1998).Google Scholar
  14. 14.
    Elmroth, E., J. Tordsson, A Grid Resource Broker Supporting Advance Reservation and Benchmark-based Resource Selection, chapter of applied parallel computing. state of the art in scientific computing (j. dongarra, k. madsen, j. wasniewski editors), lecture notes in computer science n. 3732, springer, 2006, pp. 1061–1070.Google Scholar
  15. 15.
    Fagg G.E., A. Bukovsky, S. Vadhiyar, J. Dongarra, Fault-tolerant MPI for the Harness metacomputing system, Lecture Notes in Computer Science 2073: 355–366.Google Scholar
  16. 16.
    Foster I., C. Kesselman, The Grid: Blueprint for a new computing infrastructure–Morgan and Kaufman 1998Google Scholar
  17. 17.
    Guarracino M.R., G. Laccetti and A. Murli, Application Oriented Brokering in a Medical Imaging: Algorithms and Software Architecture, chapter of Advances in Grid Computing–EGC 2005 (P.M.A. Sloot et al., editors), Lecture Notes in Computer Science n. 3470, Springer, 2005, pp. 972–982.Google Scholar
  18. 18.
    Levesque R.J., Finite volume methods for hyperbolic problems, Cambridge University Press, New York, 2002.Google Scholar
  19. 19.
    Murli A., L. D’amore and F. Gregoretti, I/O Tolerance e fault-tolerance nell’algoritmo del gradiente coniugato, firb italian national project, wp9 working note wp9-28, 2004.Google Scholar
  20. 20.
    Reed D.A., R. Ribler, H. Simitci, J. S. vetter, Autopilot: Adaptive control of distributed applications, proceedings of the seventh ieee international symposium on high performance distributed computing (hpdc), 1998.Google Scholar
  21. 21.
    Sapiro G., Geometric partial differential equations and image processing, Cambridge University Press, New York, 2001.Google Scholar
  22. 22.
    Sarti A., K. Mikula, F. Sgallari, Nonlinear Multiscale Analysis of Three-Dimensional Echocardiographic Sequences, IEEE Transactions on Medical Imaging, Vol. 18, N. 6 (1999), pp. 453–466.CrossRefGoogle Scholar

Copyright information

© International Federation for Information Processing 2007

Authors and Affiliations

  • A. Murli
    • 1
  • V. Boccia
    • 1
  • L. Carracciuolo
    • 2
  • L. D’Amore
    • 1
  • G. Laccetti
    • 1
  • M. Lapegna
    • 1
  1. 1.University of Naples Federico II, NaplesNaples
  2. 2.Institute of High Performance Computing and Networking of CNRNaplesITALY

Personalised recommendations