Advertisement

Dynamic Data-Driven Application Systems for Empty Houses, Contaminat Tracking, and Wildland Fireline Prediction

  • Craig C. Douglas
  • Divya Bansal
  • Jonathan D. Beezley
  • Lynn S. Bennethum
  • Soham Chakraborty
  • Janice L. Coen
  • Yalchin Efendiev
  • Richard E. Ewing
  • Jay Hatcher
  • Mohamed Iskandarani
  • Christopher R. Johnson
  • Deng Li
  • Minjeong Kim
  • Robert A. Lodder
  • Jan Mandel
  • Guan Qin
  • Anthony Vodacek
Part of the IFIP The International Federation for Information Processing book series (IFIPAICT, volume 239)

Abstract

We describe three different dynamic data-driven applications systems (DDDAS): an empty house, a contaminant identification and tracking, and a wildland fire. Each has something in common with all of the rest and can use some common tools. Each DDDAS is quite complicated in comparison to a traditional static input simulation that is run with large numbers of inputs instead of one longer run that is self-correcting.

Keywords

Data Assimilation Ensemble Member Spectral Element Method Wildland Fire Observation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Darema et al, DDDAS: Dynamic Data Driven Applications Systems, program solicitation 05-570, National Science Foundation, Arlington, VA, 2005; Site http://www.nsf.gov/pubs/2005/nsfD5570/nsfD5570.htm visited 10/28/2006.Google Scholar
  2. 2.
    F. Darema, Introduction to the ICCS2006 Workshop on Dynamic Data Driven Applications Systems, in Computational Science — ICCS 2006: 6th International Conference, Reading, UK, May 28–31, 2006, Proceedings, Part III, edited by V.N. Alexandrov, G.D. van Albada, P.M.A. Sloot, and J.J. Dongarra, Lecture Notes in Computer Science 3993, Springer-Verlag Heidelberg, 2006, pp. 375–383.Google Scholar
  3. 3.
    R.E. Ewing, Interactive Control of Large scale Simulations, Workshop on Dynamic Data-Driven Application Systems, National Science Foundation, Arlington, VA, March 8-10, 2000. Site http://www.dddas.org/NSFworkshop2000.html visited 10/28/2006.Google Scholar
  4. 4.
    C.C. Douglas, DDDAS.org. Includes project descriptions, many DDDAS workshop virtual proceedings, and links to DDDAS software. Site http://www.dddas.org visited 10/28/2006.
  5. 5.
    2003 Dynamic Data-Driven Application Workshop, F. Darema, ed., in Computational Science–ICCS 2003: 3rd International Conference, Melbourne, Australia and St. Petersburg, Russia, June 2-4, 2003, Proceedings, Part IV, P.M.A. Sloot, D. Abramson, A.V. Bogdanov, JJ. Dongarra, A.Y. Zomaya, Y.E. Gorbachev (Eds.), Lecture Notes in Computer Science, Vol. 2660, Springer-Verlag Heidelberg, 2003, pp. 279–384.Google Scholar
  6. 6.
    2004 Dynamic Data-Driven Application Workshop, F. Darema, ed., in Computational Science–ICCS 2004: 4th International Conference, Krakow, Poland, June 6-9, 2004, Proceedings, Part III, Marian Bubak, Geert Dick van Albada, Peter M. A. Sloot, and JJ. Dongarra (eds.), Lecture Notes in Computer Science series, vol. 3038, Springer-Verlag Heidelberg, 2004, pp. 662–834.Google Scholar
  7. 7.
    2005 Dynamic Data-Driven Application Workshop, F. Darema, ed., in Computational Science–ICCS 2005: 5th International Conference, Atlanta, Georgia, USA, May 22-25, 2005, Proceedings, Part II, Vaidy S. Sunderam, Geert Dick van Albada, Peter M.A. Sloot, Jack J. Dongarra (eds.), Lecture Notes in Computer Science series, vol. 3515, Springer-Verlag Heidelberg, 2005, pp. 610–745.Google Scholar
  8. 8.
    2006 Dynamic Data-Driven Application Workshop, F. Darema, ed., in Computational Science–ICCS 2006: 6th International Conference, Reading, UK, May 28-31, 2006, Proceedings, Part III, edited by V.N. Alexandrov, G.D. van Albada, P.M.A. Sloot, and J.J. Dongarra, Lecture Notes in Computer Science 3993, Springer-Verlag Heidelberg, 2006, pp. 375–607.Google Scholar
  9. 9.
    K. Baldridge, G. Biros, A. Chaturvedi, C.C. Douglas, M. Parashar, J. How, J. Saltz, E. Seidel, A. Sussman, January 2006 DDDAS Workshop Report, National Science Foundation, 2006. Site http://www.dddas.org/nsf-workshop-2006/wkshpreport.pdf visited 10/28/2006.
  10. 10.
    D. Metaxas and G. Tsechpenakis, Dynamic Data Driven Coupling of Continuous and Discrete Methods in 3D Tracking, in Computational Science–ICCS 2005: 5th International Conference, Atlanta, Georgia, USA, May 22-25, 2005, Proceedings, Part II, Vaidy S. Sunderam, Geert Dick van Albada, Peter M.A. Sloot, Jack J. Dongarra (eds.), Lecture Notes in Computer Science series, vol. 3515, Springer-Verlag Heidelberg, 2005, pp. 712–720.Google Scholar
  11. 11.
    R.C. Rothermel, A mathematical model for predicting fire spread in wildland fires. USDA Forest Service Research Paper INT-115, 1972.Google Scholar
  12. 12.
    F.A. Albini, PROGRAM BURNUP, A simulation model of the burning of large woody natural fuels, Final Report on Research Grant INT-92754-GR by U.S.F.S. to Montana State University, Mechanical Engineering Dept, 1994.Google Scholar
  13. 13.
    H. Anderson, Aids to determining fuel models for estimating fire behavior. USDA Forest Service, Intermountain Forest and Range Experiment Station, INT-122, 1982.Google Scholar
  14. 14.
    G. Evensen, The ensemble Kaiman filter: Theoretical formulation and practical implementation, Ocean Dynamics, 53 (2003), pp. 343–367.CrossRefGoogle Scholar
  15. 15.
    G. Evensen, Sampling strategies and square root analysis schemes for the EnKF. Ocean Dynamics, 54 (2004), pp. 539–560.CrossRefGoogle Scholar
  16. 16.
    M.K. Tippett, J. L. Anderson, C.H. Bishop, T.M Hamill, J.S. Whitaker, Ensemble square root filters, Monthly Weather Review, 131 (2003), pp. 1485–1490.CrossRefGoogle Scholar
  17. 17.
    CJ. Johns and J. Mandel, A two-stage ensemble Kaiman filter for smooth data assimilation, to appear in Environmental and Ecological Statistics, Conference on New Developments of Statistical Analysis in Wildlife, Fisheries, and Ecological Research, Oct 13–16, 2004, Columbia, MI, 2006.Google Scholar
  18. 18.
    J. Mandel, L.S. Bennethum, J.D. Beezley, J.L. Coen, C.C. Douglas, L.P. Franca, M. Kim, and A. Vodacek, A wildland fire model with data assimilation, CCM Report 233, 2006. Site http://www.math.cudenver.edu/~jmandel/papers/rep233.pdf visited 10/28/2006.
  19. 19.
    R.N. Hoffman, Z. Liu, J.-F. Louis, and C. Grassoti, Distortion representation of forecast errors, Monthly Weather Review, 123 (1995), pp. 2758–2770.CrossRefGoogle Scholar
  20. 20.
    G.D. Alexander, J.A. Weinman, and J.L. Schols, The use of digital warping of microwave integrated water vapor imagery to improve forecasts of marine extratropical cyclones, Monthly Weather Review, 126 (1998), pp. 1469–1496.CrossRefGoogle Scholar
  21. 21.
    W.G. Lawson and J.A. Hansen, Alignment error models and ensemble-based data assimilation, Monthly Weather Review, 133 (2005), pp. 1687–1709.CrossRefGoogle Scholar
  22. 22.
    S. Ravela, K.A. Emanuel, and D. McLaughlin, Data assimilation by field alignment. Physica D, to appear, 2006.Google Scholar
  23. 23.
    J. Mandel and J.D. Beezley, Predictor-corrector and morphing ensemble filters for the assimilation of sparse data into high dimensional nonlinear systems, to appear, 11th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), CD-ROM, Paper 3.12, 87th American Meterological Society Annual Meeting, San Antonio, TX, January 2007.Google Scholar
  24. 24.
    L.G. Brown, A survey of image registration techniques, ACM Computing Surveys, 24 (1992), pp. 325–376.CrossRefGoogle Scholar
  25. 25.
    S. Chakraborty, J. Hatcher, D. Bansal, and C.C. Douglas, Google Earth Fire Layering Tool, in preparation, 2006.Google Scholar
  26. 26.
    C.C. Douglas, ML-DDDAS research group web site and reports, site http://www.mgnet.org/~douglas/ml-dddas.html visited 10/28/2006.
  27. 27.
    C.R. Johnson, Scientific Computing and Imaging Institute at the University of Utah, site http://www.sci.utah.edu visited 10/28/2006.
  28. 28.
    J. Mandel, NSF funded wildfire project public web site, site http://www.www-math.cudenver.edu/~jmandel/fires visited 10/28/2006.

Copyright information

© International Federation for Information Processing 2007

Authors and Affiliations

  • Craig C. Douglas
    • 1
    • 2
  • Divya Bansal
    • 1
  • Jonathan D. Beezley
    • 3
  • Lynn S. Bennethum
    • 3
  • Soham Chakraborty
    • 1
  • Janice L. Coen
    • 4
  • Yalchin Efendiev
    • 5
  • Richard E. Ewing
    • 5
  • Jay Hatcher
    • 1
  • Mohamed Iskandarani
    • 6
  • Christopher R. Johnson
    • 7
  • Deng Li
    • 4
  • Minjeong Kim
    • 3
  • Robert A. Lodder
    • 8
  • Jan Mandel
    • 3
  • Guan Qin
    • 5
  • Anthony Vodacek
    • 9
  1. 1.Department of Computer ScienceUniversity of KentuckyLexingtonUSA
  2. 2.Department of Computer ScienceYale UniversityNew HavenUSA
  3. 3.Department of Mathematical SciencesUniversity of Colorado at Denver and Health Sciences CenterDenverUSA
  4. 4.National Center for Atmospheric ResearchBoulderUSA
  5. 5.Institute for Scientific ComputationTexas A&M UniversityCollege StationUSA
  6. 6.Rosenstiel School, of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  7. 7.Scientific Computing and Imaging InstituteUniversity of UtahSalt Lake CityUSA
  8. 8.Department of ChemistryUniversity of KentuckyLexingtonUSA
  9. 9.Center for Imaging ScienceRochester Institute of TechnologyRochesterUSA

Personalised recommendations