Advertisement

Light-Switchable Folding/Unfolding of the Collagen Triple Helix with Azobenzene-Containing Model Peptides

  • Ulrike Kusebauch
  • Lisa Lorenz
  • Sergio A. Cadamuro
  • Hans-Jürgen Musiol
  • Martin O. Lenz
  • Christian Renner
  • Josef Wachtveitl
  • Luis Moroder
Part of the Advances in Experimental Medicine and Biology book series (volume 611)

Introduction

Azobenzene derivatives have been used as backbone constituents or side-chain clamps to photocontrol in reversible manner conformational states of model peptides [ 1, 2]. Because of the ultrafast isomerization (within picoseconds), this chromophore allows spectroscopic monitoring of the fast kinetics of folding/unfolding of model peptides with ordered secondary structure motifs such as β-turns, α-helices and most recently even of β-hairpins [ 3, 4]. Aim of the present work was to gain new insights into the kinetics of assembly of tertiary structure motifs such as the collagen triple helix. For this purpose model peptides were conformationally restricted with a suitable azobenzene clamp in the trans-isomeric state (see Figure 1), which upon photoisomerization provokes unfolding of the triple helix [ 5].

Keywords

Triple Helix Model Peptide Refold Process Collagen Chain Collagen Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work was funded by the DFG (SFB 533, grant A8).

References

  1. 1.
    Woolley, A. Acc. Chem. Res. 38, 486–493 (2005).CrossRefGoogle Scholar
  2. 2.
    Renner, C. and Moroder, L. ChemBioChem 7, 868–878 (2006).CrossRefGoogle Scholar
  3. 3.
    Dong, S. L. et al. Chem-Eur. J. 12, 1114–1120 (2006).CrossRefGoogle Scholar
  4. 4.
    Aemissegger, A. et al. J. Am. Chem. Soc. 127, 2929–2936 (2005).CrossRefGoogle Scholar
  5. 5.
    Kusebauch, U. et al. Angew. Chem. Int. Ed. 45, 7015–7018 (2006).CrossRefGoogle Scholar
  6. 6.
    Panasik, N. Jr. et al. Int. J. Pept. Prot. Res. 44, 262–269 (1994).CrossRefGoogle Scholar
  7. 7.
    Privalov, P. L. Adv. Prot. Chem. 35, 1–104, (1982).CrossRefGoogle Scholar
  8. 8.
    Lazarev, Y. A. et al. Biopolymers 24, 1449–1478 (1985).CrossRefGoogle Scholar
  9. 9.
    Lazarev, Y. A. et al. Biopolymers 32, 189–195 (1992).CrossRefGoogle Scholar
  10. 10.
    Engel, J. and Bächinger, H. P. Matrix Biol. 19, 235–244 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ulrike Kusebauch
    • 1
  • Lisa Lorenz
    • 2
  • Sergio A. Cadamuro
    • 1
  • Hans-Jürgen Musiol
    • 1
  • Martin O. Lenz
    • 2
  • Christian Renner
    • 1
  • Josef Wachtveitl
    • 2
  • Luis Moroder
    • 1
  1. 1.Max-Planck-Institute of BiochemistryMartinsried
  2. 2.Institute of Physical and Theoretical, Chemistry, Institute of BiophysicsJohann Wolfgang Goethe-UniversityFrankfurt/MainGermany

Personalised recommendations