Advertisement

Peptide Antagonists of the PED-hPLD1 Binding

  • F. Viparelli
  • N. Doti
  • S.M. Monti
  • D. Marasco
  • N. Dathan
  • C. Pedone
  • C. Miele
  • P. Formisano
  • F. Beguinot
  • M. Ruvo
Part of the Advances in Experimental Medicine and Biology book series (volume 611)

Introduction

PED (Phosphoprotein Enriched in Diabetes) is an ubiquitously expressed 15 kDa cytosolic protein with recognized multiple functions. It has been demonstrated that PED has broad anti-apoptotic properties1,2 and, by altering insulin secretion, has a proven implication in diabetes3. In cultured cells and in transgenic mice, PED overexpression induces insulin-resistance and impairs glucose tolerance. Recent evidence indicates that increased interaction of PED with Phospholipase D1 (hPLD1) is a key event leading to these abnormalities in vivo and that this interaction is mediated by a C-terminal domain of PLD1 comprising residues 712–1070, D44. To further study this interaction, we prepared the recombinant proteins/sub-domains and after purification and preliminary characterization by CD, we measured the KDby SPR. Furthermore, following an approach of protein fragmentation and peptide fractionation we have been able to identify regions on PED that are involved in the...

Keywords

Synthetic Peptide Competition Assay Strong Competitor Peptide Antagonist Tryptic Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work was funded by the italian Ministry of University and Research (MUR), legge 297. Financial support also from project FIRB RBNE03PX83_005 is acknowledged.

References

  1. 1.
    Trencia A., Perfetti A., Cassese A., Vigliotta G., Miele C, Oriente F., Santopietro S., Giacco F., Condorelli G., Formisano P., Beguinot F. Mol. Cell. Biol. 45, 11–21 (2003).Google Scholar
  2. 2.
    Arajou E., Danziger N., Cordier J., Glowinski J., Chneiweiss H. J. Biol. Chem. 268, 5911–5920 (1993).Google Scholar
  3. 3.
    Vigliotta G., Miele C, Santopietro S., Portella G., Perfetti A., Maitan M.A., Cassese A., Oriente F., Trencia A., Fiory F., Romano C, Tiveron C, Tatangelo L., Troncone G., Formisano P., Beguinot F. Mol Cell Biol, 24, 5005–15 (2004).CrossRefGoogle Scholar
  4. 4.
    Zhang Y., Redina O., Altshuller Y.M., Yamazaki M., Ramos J., Chneiweiss H., Kanaho Y., Frohman M.A. J. Biol. Chem. 275, 35224–32 (2000).CrossRefGoogle Scholar
  5. 5.
    Hill J.M., Vaidyanathan H., Ramos J.W., Ginsberg M.H., Wemer M.H. EMBO J. 21, 6494– 504 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • F. Viparelli
    • 1
  • N. Doti
    • 1
    • 3
  • S.M. Monti
    • 1
  • D. Marasco
    • 1
  • N. Dathan
    • 1
  • C. Pedone
    • 1
  • C. Miele
    • 2
  • P. Formisano
    • 2
  • F. Beguinot
    • 2
  • M. Ruvo
    • 1
  1. 1.Istituto di Biostrutture e Bioimmagini — CNRNapoliItaly
  2. 2.DBPCM, Università degli Studi di Napoli Federico IINapoliItaly
  3. 3.Dipartimento di Biochimica e BiofisicaSeconda Università di NapoliNapoliItaly

Personalised recommendations