Advertisement

Comparison of [18F]FBA and [18F]FPyMe as peptide radio-labeling agents of PEPHC1 for PET imaging of EGFRvIII

  • Charlotte L. Hansen
  • Bertrand Kuhnast
  • Franciose Hinnen
  • Frédéric Dollé
  • Nic Gillings
  • Paul R. Hansen
  • Andreas Kjær
Part of the Advances in Experimental Medicine and Biology book series (volume 611)

Introduction

Receptor binding peptides labeled with positron-emitting nuclides for Positron Emission Tomography (PET) are useful targeting agents for diagnostic imaging of various types of cancer. Among the positron emitting nuclides, fluorine-18 is often the radionuclide of choice for labeling of peptides, due to the physical and nuclear characteristics of the isotope [ 1]. A two-step 18F-labeling of resin-bound linear peptides can be achieved by acylation of the N-terminus with 4-[ 18F]fluorobenzoic acid ([ 18F]FBA) [ 2], Figure 1a. Alternatively, 18F-labeling may be performed via the thiol group of cysteine using 1-[3-(2-[ 18F]fluoropyridin-3-yloxy)propyl]pyrrole-2,5-dione ([ 18F]FpyMe) [ 3], Figure 1b. In this study, we compare [ 18F]FBA and [ 18F]FPyMe for the 18F-labeling of PEPHC1 (HFLIIGFMRRALCGA), a peptide which is selective towards the cancer specific epidermal growth factor tyrosine kinase receptor mutation (EGFRvIII) [ 4].

Keywords

Radiochemical Yield Coupling Reagent Growth Factor Tyrosine Kinase Receptor Helix Formation Growth Factor Tyrosine Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The Danish Cancer Society for funding.

The work was funded by an USDA-NRICGP grant to L. Martin.

References

  1. 1.
    Kilbourn, M.R., Dence, C.S., Welch, M.J., Mathias, C.J. The Journal of Nuclear Medicine, 1987, 28: 462–470Google Scholar
  2. 2.
    Sutcliffe-Goulden, J.L., O'Doherty, M.J., Marsden, P.K., Hart, I.R., Marshall, J.F., Bansal, S.S.,European Journal of Nuclear Medicine and Molecular Imaging, 2002, 29(6): 754–759CrossRefGoogle Scholar
  3. 3.
    de Bruin, B., Kuhnast, B., Hinnen, F., Yaouancq, L., Amessou, M., Johannes, L., Samson, A., Boisgard, R., Tavitian, B., Dollé, F., Bioconjugate Chemistry, 2005, 16: 406–420CrossRefGoogle Scholar
  4. 4.
    Campa, M.J., Serlin, S.B. and E.F. Patz, Academic Radiology, 2002, 9(8): 927–932CrossRefGoogle Scholar

References

  1. 1.
    Cole, A. M., Weis, P. and Diamond, G. J. Biol. Chem. 272, 12008–12013 (1997).CrossRefGoogle Scholar
  2. 2.
    Tossi, A., Sandri, L. and Giangaspero, A. Biopolymers 55, 4–30 (2000).CrossRefGoogle Scholar
  3. 3.
    Jia, X., et al. Appl. Environ. Microbiol. 66, 1928–1932 (2000).CrossRefGoogle Scholar
  4. 4.
    Merrifield, R. B., Vizioli, L. D. and Boman, H. G. Biochem. 21, 5020–5031 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Charlotte L. Hansen
    • 1
  • Bertrand Kuhnast
    • 3
  • Franciose Hinnen
    • 3
  • Frédéric Dollé
    • 3
  • Nic Gillings
    • 1
  • Paul R. Hansen
    • 2
  • Andreas Kjær
    • 1
  1. 1.PET & Cyclotron UnitCopenhagen University HospitalDenmark
  2. 2.Department of Natural ScienceUniversity of CopenhagenDenmark
  3. 3.Départment de Recherche MédicaleService Hospitalier Frédéric JoliotFrance

Personalised recommendations