Advertisement

A Peptide Vaccine Based on Retro-Inverso β-Amyloid Sequences Fails to Elicit a Cross-reactive Immune response

  • Elisabetta Bianchi
  • Paolo Ingallinella
  • Marco Finotto
  • Xiaoping Liang
  • Gene G. Kinney
  • Antonello Pessi
Part of the Advances in Experimental Medicine and Biology book series (volume 611)

Introduction

Retro-inverso peptides as vaccines. In a retro-inverso (RI) peptide, the direction of the amino acid sequence is reversed, and the chirality of each amino acid residue is inverted, resulting in inversion of each peptide bond within the peptide sequence [1].

Several studies have documented that the RI analogs of linear peptide epitopes can be useful as vaccines, the most convincing example being the retro-inverso analog of the immunodominant epitope of Foot-and-Mouth disease virus [2]. In general, the likelihood of a RI peptide successfully mimicking a given epitope depends on how much the epitope is defined by the overall topology of the side-chains, rather than by interactions involving the peptide backbone, and successful mimicry is more often observed for epitopes in random coil, loop, or cyclic conformations, rather than in specific secondary structures. Conversely, the available studies indicate a low likelihood of a RI peptide eliciting a T-cell response...

Keywords

Antibody Response Peptide Backbone Immunodominant Epitope Chain Topology Specific Secondary Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thankfully acknowledge the intellectual contributions to this work of G. Ciliberto, R. Cortese, G. Seabrook, and J. Shiver.

References

  1. 1.
    Chorev, M., and Goodman, M., Acc. Chem. Res. 26:266–273 (1993).CrossRefGoogle Scholar
  2. 2.
    Briand, J. P., Benkirane, N., Guichard, G., Newman, J. F., Van Regenmortel, M. H., Brown, F., and Muller, S., Proc. Natl. Acad. Sci. U.S.A. 94:12545–50 (1997).CrossRefGoogle Scholar
  3. 3.
    Apostolopoulos, V., and Lazoura., E., Expert Rev. Vaccines 3:151–162 (2004).CrossRefGoogle Scholar
  4. 4.
    Bard, F., Barbour, R., Cannon, C., Carretto, R., Fox, M., Games, D., et al., Proc. Natl. Acad. Sci. U.S.A. 100:2023–8 (2003).CrossRefGoogle Scholar
  5. 5.
    Morimoto, A., Irie, K., Murakami, K., Masuda, Y., Ohigashi, H., Nagao, M., et al., J. Biol. Chem. 279:52781–8 (2004).CrossRefGoogle Scholar
  6. 6.
    Urbanc, B., Cruz, L., Yun, S., Buldyrev, S.V., Bitan, G., Teplow, D.B., and Stanley, H.E., Proc. Natl. Acad. Sci. U.S.A. 101:17345–50 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Elisabetta Bianchi
    • 1
  • Paolo Ingallinella
    • 1
  • Marco Finotto
    • 1
  • Xiaoping Liang
    • 2
  • Gene G. Kinney
    • 3
  • Antonello Pessi
  1. 1.IRBM-MRL Peptide Centre of ExcellencePomeziaItaly
  2. 2.Department of Vaccine and Biologics ResearchMerck Research LaboratoriesWest PointUSA
  3. 3.Department of Alzheimer's ReserachMerck Research LaboratoriesWest PointUSA

Personalised recommendations