Advertisement

Rationally-designed Multivalent Architectures for Mimicking Homotrimers of CD40L, a Member of the TNF Superfamily

  • Gilles Guichard
  • Nathalie Trouche
  • Sébastien Wieckowski
  • Weimin Sun
  • Olivier Chaloin
  • Alberto Bianco
  • Johan Hoebeke
  • Pascal Schneider
  • Sylvie Fournel
Part of the Advances in Experimental Medicine and Biology book series (volume 611)

Introduction

Ligands and receptors of the TNF superfamilies play a central role in the organization and function of the immune system [1]. Ligands of the TNF-family, share a common structural motif. Monomers self-assemble around a three-fold symmetry axis to form non-covalent homotrimers that can each bind three receptor molecules. Interaction between CD40, a member of the TNF receptor superfamily, and its ligand CD40L, a 39 kDa glycoprotein is essential for the development of humoral and cellular immune responses. Selective blockade or activation of this pathway provides the ground for the development of new treatments against immunologically based-diseases and malignancies.

Synthetic multivalent ligands, owing to the presence of multiple copies of a recognition motif attached to a central scaffold, can mediate clustering of cell surface receptors and thereby function as effector molecules [ 2]. We have shown previously that rigid trimeric scaffolds can serve to distribute a...

Keywords

Hexanoic Acid CD40 Binding Amino Hexanoic Acid Mouse Dendritic Cell Central Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the CNRS, the Ministère de la Recherche (ACI « Jeunes Chercheurs »), « La Ligue contre le Cancer » and INCA. WS and SW were supported by grants from the Minist籥 de la Recherche and from the Fondation pour la Recherche Médicale (FRM). NT was supported by « La Ligue contre le Cancer »

References

  1. 1.
    Bodmer, J.L., Schneider, P., Tschopp, J. Trends Biochem. Sci. 27, 19–26 (2002).CrossRefGoogle Scholar
  2. 2.
    Kiessling, L. L., Gestwicki, J. E., Strong, L. E., Angew. Chem. Int. Ed. Engl. 45, 2348–2368 (2006).CrossRefGoogle Scholar
  3. 3.
    Fournel, S., Wieckowski, S., Sun, W., Trouche, N., Dumortier, H., Bianco, A., Chaloin, O., Habib, M., Peter, J.-C., Schneider, P., Vray, B., Toes, R. E., Offringa, R., Melief, C. J. M., Hoebeke, J., Guichard, G. Nature Chem. Biol. 1, 377–382 (2005).CrossRefGoogle Scholar
  4. 4.
    Wieckowski, S., Trouche, N., Chaloin, O., Guichard, G., Fournel, S., Hoebeke, J. Biochemistry 46, 3482–3493 (2007).CrossRefGoogle Scholar
  5. 5.
    Habib, M., Chamekh, M., Noval Rivas, M., Wieckowski, S, Sun, W., Bianco, A., Trouche, N., Chaloin, O., Dumortier, H., Goldman, M., Guichard, G., Fournel, S., Vray, B. J. Immunol. 178, 6700–6704 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gilles Guichard
    • 1
  • Nathalie Trouche
    • 1
  • Sébastien Wieckowski
    • 1
  • Weimin Sun
    • 1
  • Olivier Chaloin
    • 1
  • Alberto Bianco
    • 1
  • Johan Hoebeke
    • 1
  • Pascal Schneider
    • 2
  • Sylvie Fournel
    • 1
  1. 1.CNRSInstitute of Molecular and Cellular BiologyStrasbourgFrance
  2. 2.Department of BiochemistryUniversity of LausanneEpalingesSwitzerland

Personalised recommendations