Advertisement

Expression of Double Transmembrane Domain GPCR Fragments for Biophysical Analysis

  • Leah S. Cohen
  • Boris Arshava
  • Racha Estephan
  • Jacquelinev Englander
  • Melinda Hauser
  • Jeffrey M. Becker
  • Fred Naider
Part of the Advances in Experimental Medicine and Biology book series (volume 611)

Introduction

There are thousands of protein structures in the databases that have been determined using X-ray crystallography and nuclear magnetic resonance spectroscopy. Despite the prevalence of integral membrane proteins, or IMPs (20-30% of the human genome encodes IMPs) few structures of these proteins have been determined, and only one G protein-coupled receptors (GPCRs) structure, that of rhodopsin, has been solved by X-ray crystallography [1]. Based on biochemical and biophysical analyses, GPCRs have been shown to consist of an N-terminal extracellular region, seven transmembrane (TM) helices separated by intra- and extra-cellular loops, and a C-terminal cytoplasmic tail. One of the factors that limits the number of high resolution structures is the low level of expression for a full-length GPCR. A few groups have started to study fragments of GPCRs to help to elucidate their structures [2, 3].

We have recently published high resolution structures of a 73-residue peptide...

Keywords

Molar Ellipticity High Resolution Structure Biophysical Analysis Organic Aqueous Medium CNBr Cleavage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by grants NIH GM-22086 and NIH GM-22087 to FN and JMB.

References

  1. 1.
    Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A.; Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. Science 289, 739–745 (2000).CrossRefGoogle Scholar
  2. 2.
    Zheng, H., Zhao, J., Sheng, W., Xie, X. Q. Biopolymers 83, 46–61 (2006).CrossRefGoogle Scholar
  3. 3.
    Yeagle, P. L. and Albert, A. D. Biochimica et Biophysica Acta 1768, 808–824 (2007).CrossRefGoogle Scholar
  4. 4.
    Estephan, R., Englander, J., Arshava, B., Samples, K. L., Becker, J. M., and Naider, F. Biochemistry 44, 11795–11810 (2005).CrossRefGoogle Scholar
  5. 5.
    Neumoin, A., Arshava, B., Becker, J., Zerbe, O., and Naider, F. Biophys J (2007).Google Scholar
  6. 6.
    Page, R. C., Moore, J. D., Nguyen, H. B., Sharma, M., Chase, R., Gao, F. P., Mobley, C. K., Sanders, C. R., Ma, L., Sonnichsen, F. D., Lee, S., Howell, S. C., Opella, S. J., and Cross, T. A. J Struct Funct Genomics 7, 51–64 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Leah S. Cohen
    • 1
  • Boris Arshava
    • 1
  • Racha Estephan
    • 1
  • Jacquelinev Englander
    • 1
  • Melinda Hauser
    • 2
  • Jeffrey M. Becker
    • 2
  • Fred Naider
    • 1
  1. 1.Department of Chemistry and the Macromolecular Assemblies InstitiuteThe College of Staten Island (City University of New York)Staten Island
  2. 2.Department of MicrobiologyUniversity of TennesseeKnoxville

Personalised recommendations