Advertisement

Autonomous DNA Models

  • Zoya Ignatova
  • Karl-Heinz Zimmermann
  • Israel Martínez-Pérez
Chapter

Abstract

The second generation of DNA computing focusses on models that are molecular-scale, autonomous, and partially programmable. The computations are essentially driven by the self-assembly of DNA molecules and are modulated by DNA-manipulating enzymes. This chapter addresses basic autonomous DNA models emphasizing tile assembly, finite state automata, Turing machines, neural networks, and switching circuits.

Keywords

Input String Binary Decision Diagram State Automaton Tile Assembly Model Input Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adar R, Benenson Y, Linshiz G, Rosner A, Tishby N, Shapiro E (2004) Stochastic computing with biomolecular automata. Proc Natl Acad Sci USA 101:9960–9965Google Scholar
  2. 2.
    Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Programmable and autonomous computing machine made of biomolecules. Nature 414:430–434CrossRefGoogle Scholar
  3. 3.
    Benenson Y, Paz-Elizur T, Adar R, Livneh Z, Shapiro E (2003) DNA molecules providing a computing machine with both data and fuel. Proc Natl Acad Sci USA 100:2191–2196Google Scholar
  4. 4.
    Condon A (2004) Automata make antisense. Nature 429:361–362CrossRefGoogle Scholar
  5. 5.
    Durbin R, Eddy SR, Krogh A, Mitchinson G (1998) Biological sequence analysis: probabilistic models of proteins and amino acids. Cambridge Univ Press, CambridgeMATHGoogle Scholar
  6. 6.
    Fu TJ, Seeman NC (1993) DNA double-crossover molecules. Biochem 32:3211–3220CrossRefGoogle Scholar
  7. 7.
    Hagiya M, Arita M (1998) Towards parallel evaluation and learning of Boolean μ-formulas with molecules. Proc 3rd DIMACS Workshop DNA Based Computers, 57–72Google Scholar
  8. 8.
    Hagiya M, Sakamoto M, Arita M, Kiga D, Yokoyama S (1997) Towards parallel evaluation and learning of boolean u-formulas with molecules. Proc 3rd DIMACS Workshop DNA Based Computers, 105–114Google Scholar
  9. 9.
    Hornik K, Stinchcombe, White H (1989) Multilayer feedforward networks are universal approximators. Neural Networks 2:359–366CrossRefGoogle Scholar
  10. 10.
    Kari L, Konstantinidis S, Losseva E, Sosik P, Thierrin G (2006) Hairpin structures in DNA words. LNCS 3492:158–170Google Scholar
  11. 11.
    Kroeker WD (1976) Mung bean nuclease I: terminally directed hydrolisis of native DNA. Biochem 15:4463–4467.CrossRefGoogle Scholar
  12. 12.
    Kuramochi J, Sakakibara Y (2006) Intensive in vitro experiments of implementing and executing finite automata in test tube. LNCS 3892:193–202Google Scholar
  13. 13.
    Li X, Yang X, Qi J, Seeman NC (1996) Antiparallel DNA double crossover molecules as components for nanoconstruction. J Am Chem Soc 1118:6131–6140CrossRefGoogle Scholar
  14. 14.
    Martínez-Pérez I, Zhong G, Ignatova Z, Zimmermann KH (2005) Solving the Hamiltonian path problem via DNA hairpin formation. Int J Bioinform Res Appl 1:389–398CrossRefGoogle Scholar
  15. 15.
    Martinez-Perez I, Zhong G, Ignatova Z, Zimmermann KH (2007) Computational genes: a tool for molecular diagnosis and therapy of aberrant mutational phenotype. BMC Bioinform 8:365CrossRefGoogle Scholar
  16. 16.
    McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 7:115-133CrossRefMathSciNetGoogle Scholar
  17. 17.
    Mills Jr AP (2002) Gene expression profiling diagnosis through DNA molecular computation. Trends Biotechnol 20:137–140CrossRefGoogle Scholar
  18. 18.
    Moore EF (1962) Sequential machines: selected papers. Addison-Wesley Reading MAGoogle Scholar
  19. 19.
    Reif JH, Sahu S, Yin P (2005) Compact error-resilient computational DNA tiling assemblies. LNCS 3384:293–307MathSciNetGoogle Scholar
  20. 20.
    Reif JH, Sahu S, Yin P (2006) Complexity and graph self-assembly in accretive systems and self-destructible systems. LNCS 3892:257–274Google Scholar
  21. 21.
    Rothemund PWK (1996) A DNA and restriction enzyme implemenation of Turing machines. Proc 1st DIMACS Workshop DNA Based Computers 75–119Google Scholar
  22. 22.
    Sahu S, Reif JH (2007) Capabilities and limits of compact error-resilience methods for algorithmic self-assembly in two and three dimensions. LNCS 4287:223–238Google Scholar
  23. 23.
    Rosenblatt F (1958) The perceptron: a probabilitistic mode for infomation storage and processing in the brain. Psychological Rev 65:386–408CrossRefMathSciNetGoogle Scholar
  24. 24.
    Sakakibara Y, Suyama A (2000) Intelligent DNA chips: logical operation of gene expression profiles on DNA computers. Gen Inform 11:33-42Google Scholar
  25. 25.
    Sakamoto K, Gouzu H, Komiya K, Kiga D, Yokoyama S, Yokomori T, Hagiya M (2000) Molecular computation by DNA hairpin formation. Science 288:1223–1226.CrossRefGoogle Scholar
  26. 26.
    Sakamoto K, Gouzu H, Komiya K, Kiga D, Yokoyama S, Ikeda S, Sugiyama H, Hagiya M (1999) State transitions by molecules. Biosystems 52:81–91CrossRefGoogle Scholar
  27. 27.
    Schwacha A, Kleckner N (1995) Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83:783–791CrossRefGoogle Scholar
  28. 28.
    Seelig G, Soloveichnik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588CrossRefGoogle Scholar
  29. 29.
    Seelig G, Yurke B, Winfree E (2006) Catalyzed relaxation of a metastable DNA fuel. J Am Chem Soc 128:12211–12220CrossRefGoogle Scholar
  30. 30.
    Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247CrossRefGoogle Scholar
  31. 31.
    Seeman NC (1990) De novo design of sequences for nucleic acid structural engineering. J Biomol Struct Dyn 8:573–581Google Scholar
  32. 32.
    Seeman NC (1993) DNA double-crossover molecules. Biochem 32:3211–3220CrossRefGoogle Scholar
  33. 33.
    Seeman NC (1999) DNA engineering and its application to nanotechnology. Trends Biotechnol 17:437–443CrossRefGoogle Scholar
  34. 34.
    Stojanovic MN, Stefanovic D (2003) A deoxyribozyme-based molecular automaton. Nat Biotechnol 21:1069–1074CrossRefGoogle Scholar
  35. 35.
    Thaler DS, Stahl FW (1988) DNA double-chain breaks in recombination of phage and of yeast. Annu Rev Genet 22:169–197CrossRefGoogle Scholar
  36. 36.
    Tyagi S, Kramer FR (1996) Probes that fluoresce upon hybridization. Nature Biotech 14:303–308CrossRefGoogle Scholar
  37. 37.
    Winfree E (1998) Algorithmic self-assembly of DNA. PhD thesis, Caltec, PasadenaGoogle Scholar
  38. 38.
    Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544CrossRefGoogle Scholar
  39. 39.
    Winfree E, Yang X, Seeman NC (1996) Universal Computation via self-assembly of DNA: some theory and experiments. Proc 2nd DIMACS Workshop DNA Based Computers 191-213Google Scholar
  40. 40.
    Turberfield AJ, Mitchell JC, Yurke B, Mills Yr AP Blakey MI, Simmel FC (2003) DNA fuel for free-running nanomachines. Phys Rev Lett 90:118102CrossRefGoogle Scholar
  41. 41.
    Yin P, Turberfield AJ, Sahu S, Reif JH (2005) Design of autonomous DNA nanomechanical device capable of universal computation and universal translational motion. LNCS 3892:399–416Google Scholar
  42. 42.
    Yurke B, Mills Jr AP (2003) Using DNA to power nanostructures. Genet Program Evolable Machines 4:111–122CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2008

Authors and Affiliations

  • Zoya Ignatova
    • 1
  • Karl-Heinz Zimmermann
    • 2
  • Israel Martínez-Pérez
    • 2
  1. 1.Cellular BiochemistryMax Planck Institute of BiochemistryMunichGermany
  2. 2.Institute of Computer TechnologyHamburg University of TechnologyGermany

Personalised recommendations