Non-Autonomous DNA Models

  • Zoya Ignatova
  • Karl-Heinz Zimmermann
  • Israel Martínez-Pérez


Early biomolecular computing research focussed on laboratoryscale human-operated DNA models of computation for solving complex computational problems. These models generate large combinatorial libraries of DNA to provide search spaces for parallel filtering algorithms. Many difierent methods for library generation, solution filtering, and output generation were experimentally studied. This chapter addresses the basic filtering models and describes two basic computationally complete and universal DNA models of computation, splicing model and sticker model.


Test Tube Span Tree Steiner Tree Vertex Cover Hamiltonian Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman L (1994) Molecular computation of solutions of combinatorial problems. Science 266:1021–1023CrossRefGoogle Scholar
  2. 2.
    Adleman L (1996) On constructing a molecular computer. DIMACS 27:1–21MathSciNetGoogle Scholar
  3. 3.
    Amos M(2005) Theoretical and experimental DNA computation. Springer, Berlin HeidelbergMATHGoogle Scholar
  4. 4.
    Bach E, Condon A, Glaser E, Tanguay C (1996) DNA models and algorithms for NP-complete problems. Proc 11th Ann IEEE Conf Comp Complex, Philadelphia, 290–299Google Scholar
  5. 5.
    Braich RS, Chelyapov N, Johnson C, Rothemumd PWK, Adleman L (2002) Solution of a 20-variable 3-sat problem on a DNA computer. Science 296:499– 502CrossRefGoogle Scholar
  6. 6.
    Faulhammer D, Cukras AR, Lipton RJ, Landweber LF (2000) Molecular computation: RNA solutions to chess problems. PNAS 97:1385–1389CrossRefGoogle Scholar
  7. 7.
    FellerW(1968) An introduction to probability theory and its applications. Wiley, New YorkMATHGoogle Scholar
  8. 8.
    Feynman RP (1961) Miniaturization. In: Gilbert DH (ed.). Reinhold, New YorkGoogle Scholar
  9. 9.
    Freund R, Kari L, Pâun G (1999) DNA computing based on splicing: the existence of universal computers. Theory Comp Systems 32:69–112MATHCrossRefGoogle Scholar
  10. 10.
    Gibbons A, Amos M, Hodgson D (1996) Models of DNA computation. LNCS 1113:18–36MathSciNetGoogle Scholar
  11. 11.
    Guo M, Chang WL, Ho M, Lu J, Cao J (2005) Is optimal solution of every NPcomplete or NP-hard problem determined from its characteristic for DNA-based computing? Biosystems 80:71–82CrossRefGoogle Scholar
  12. 12.
    Head T (1987) Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull Math Biol 47:737–759MathSciNetGoogle Scholar
  13. 13.
    Henkel CV, Rozenberg G, Spaink H (2005) Application to mismatch detection methods in DNA computing. LNCS 3384:159–168MathSciNetGoogle Scholar
  14. 14.
    Lipton RJ (1995) DNA solution of hard combinatorial problems. Science 268: 542–545CrossRefGoogle Scholar
  15. 15.
    Liu Q, Wang L, Frutos AG, Condon AE, Corn RM, Smith LM (2000) A surfacebased approach to DNA computing. Nature 403:175–179CrossRefGoogle Scholar
  16. 16.
    Liu Q, Wang L, Frutos AG, Condon AE, Corn RM, Smith LM (2000) DNA computing on surfaces. Nature 403:175–179CrossRefGoogle Scholar
  17. 17.
    Martinez-Perez I (2007) Biomolecular computing models for graph problems and finite state automata. Ph.D. thesis Hamburg Univ TechGoogle Scholar
  18. 18.
    Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science 278:446–449CrossRefGoogle Scholar
  19. 19.
    Păun G, Rozenberg G, Salomaa A (1998) DNA computing: new computing paradigms. Springer, New YorkGoogle Scholar
  20. 20.
    RheoGene (2005) Market WireGoogle Scholar
  21. 21.
    Roweis S, Winfree E, Burgoyne R, Chelyapov N, Goodman M, Rothemund P, Adleman L (1996) A sticker based architecture for DNA computation. In: Baum EB (ed.) DNA Based Computers 1–27Google Scholar
  22. 22.
    Rozenberg G, Spaink H (2003) DNA computing by blocking. Theoret Comp Sci 292:653–665MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Sakakibara Y, Suyama A (2000) Intelligent DNA chips: logical operation of gene expression proviles on DNA computers. Genome Inform 11:33–42Google Scholar
  24. 24.
    Scharrenberg O (2007) Programming of stickers machines. Project Work, Hamburg Univ TechGoogle Scholar
  25. 25.
    Zimmermann KH (2002) On applying molecular computation to binary linear codes. IEEE Trans Inform Theory 48:505–510MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Zimmermann KH (2002) Efficient DNA sticker algorithms for NP-complete graph problems. Comp Phys Comm 114:297-309CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2008

Authors and Affiliations

  • Zoya Ignatova
    • 1
  • Karl-Heinz Zimmermann
    • 2
  • Israel Martínez-Pérez
    • 2
  1. 1.Cellular BiochemistryMax Planck Institute of BiochemistryMunichGermany
  2. 2.Institute of Computer TechnologyHamburg University of TechnologyGermany

Personalised recommendations