Word Design for DNA Computing

  • Zoya Ignatova
  • Karl-Heinz Zimmermann
  • Israel Martínez-Pérez


This chapter addresses the problem of negative word design negative word design: Construct a large set of oligonucleotides which selectively hybridize so that undesired molecules encoding false results or blocking the desired reactions are excluded. In practice, such a set of oligonucleotides is designed so that it simultaneously satisfies several thermodynamical and combinatorial constraints.


Block Code Edit Distance Word Design Reverse Complement Steiner System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann J, Gast FU (2003) Word design for biomolecular information processing. Zeitschr Naturforsch 58:157–161Google Scholar
  2. 2.
    Bours PAH (1995) On the construction of perfect deletion-correcting codes using design theory. Designs, Codes, Cryptography 6:5–20MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brouwer A (1998) In: Pless V, Huffman W (eds.) Handbook of coding theory. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Day WHE (1984) Properties of Levenshtein metrics on sequences. Bull Math Biology 46:327–332MATHGoogle Scholar
  5. 5.
    Domaratzki M (2006) Bond-free DNA language classes. Nat Comput 6:371–402CrossRefMathSciNetGoogle Scholar
  6. 6.
    Deaton R, Garzon R, Murphy J, Rose D, Franceshetti, Stevens Jr S (1996) Genetic search of reliable encodings for DNA based computation. In: Koza J, Goldberg D, Fogel R, Riolo R (eds.) First Conf Genetic Programming. Stanford, CAGoogle Scholar
  7. 7.
    D’yachkov A, Erdös P, Macula A, Rykov V, Vilenkin P, White S (2003) Exordium for DNA codes. J Combinat Opt 7:369–379MATHCrossRefGoogle Scholar
  8. 8.
    D’yachkov A, Macula A, Pogozelski W, Renz T, Rykov V, Torney D (2005) A weighted insertion–deletion stacked pair thermodynamic metric for DNA codes. LNCS 3384:90–103MathSciNetGoogle Scholar
  9. 9.
    D’yachkov A, Vilenkin P, Ismagilo K, Sarbaev RS, Macula A, Torney D, White S (2005) On DNA codes. Probl Inform Trans 41:349–367MATHCrossRefGoogle Scholar
  10. 10.
    Frutos A, Liu Q, Thiel A, Sanner AM, Condon A, Smith L, Corn R (1997) Demonstration of a word design strategy for DNA computing on surfaces. Nuc Acids Res 25:4748–4757CrossRefGoogle Scholar
  11. 11.
    Gaborit P, King O (2005) Linear constructions for DNA codes. Theoret Comp Sci 334:99–113MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Garzon M, Phan Y, Roy S, Neel A (2006) In search of optimal codes for DNA computing. LNCS 4287:143–156Google Scholar
  13. 13.
    Gerry NP, Witowski NE, Day J, Hammer RP, Barany G, Barany F (1999) Universal DNA microarray method for multiplex detection of low abundance point mutations. J Mol Biol 292:251–262CrossRefGoogle Scholar
  14. 14.
    Kari L, Konstantinidis S, Sosik P (2005) Bond-free languages: formalizations, maximality and construction methods. LNCS 3384:169–181MathSciNetGoogle Scholar
  15. 15.
    Kari L, Konstantinidis S, Sosik P (2005) Preventing undesirable bonds between DNA codewords. LNCS 3384:182–191MathSciNetGoogle Scholar
  16. 16.
    Kari L, Konstantinidis S, Losseva E, Wozniak G (2003) Sticky-free and overhang-free DNA languages. Acta Inform 40:119–157MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kari L, Mahalingam K (2006) DNA codes and their properties. LNCS 4287:127–142Google Scholar
  18. 18.
    Kao MY, Sanghi M, Schweller R (2005) Randomized fast design of short DNA words. LNCS 3580:1275–1286MathSciNetGoogle Scholar
  19. 19.
    King O (2003) Bounds for DNA codes with constant GC-content. Elect J Combinat 10:1–13Google Scholar
  20. 20.
    Levenshtein V (1966) Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Dokl 10:707–710MathSciNetGoogle Scholar
  21. 21.
    Levenshtein V (2001) Efficient reconstruction of sequences. IEEE Trans Inform Theory 47:2–22MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Levenshtein V (2002) Bounds for deletion/insertion correcting codes. Proc ISIT 2002, Lausanne, SwitzerlandGoogle Scholar
  23. 23.
    Litsyn S (1998) An updated table of the best binary codes known. In: Pless V, Huffman W (eds.) Handbook of coding theory. Elsevier, AmsterdamGoogle Scholar
  24. 24.
    Liu Q, Wang L, Frutos AG, Condon AE, Corn R, Smith LM (2000) Nature 403:175–179CrossRefGoogle Scholar
  25. 25.
    MacWilliams FJ, Slone NJA (1985) The theory of error-correcting codes. North-Holland, AmsterdamMATHGoogle Scholar
  26. 26.
    Marathe A, Condon A, Corn R (2001) On combinatorial DNA word design. J Comput Biol 8:201–220CrossRefGoogle Scholar
  27. 27.
    Milenkovic O, Kashyap N (2006) On the design of codes for DNA computing. LNCS 3969:100–119MathSciNetGoogle Scholar
  28. 28.
    Rykov V, Macula A, Torney D, White P (2001) DNA sequences and quaternary cyclic codes. Proc ISIT 2001, Washington, DCGoogle Scholar
  29. 29.
    Schulman L, Zuckerman D (1999) Asymptotic good codes correcting insersions, deletions, and transpositions. IEEE Trans Inform Theory 45:2552–2557MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Sloane L (1999) On single-deletion-correcting codes. In: Arasu K, Seress A (eds.) Codes and Designs. Walter de Gruyter, BerlinGoogle Scholar
  31. 31.
    Tenengolts G (1984) Nonbinary codes, correcting single deletion or insertion. IEEE Trans Inform Theory 30:766–769MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Tulpan D, Hoos H, Condon A (2002) Stochastic local search algorithms for DNA word design. LNCS 2568:229–241Google Scholar
  33. 33.
    Tulpan D, Hoos H (2003) Hybrid randomized neighborhood improve stochastic local search for DNA code design. LNAI 2671:418–433MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag US 2008

Authors and Affiliations

  • Zoya Ignatova
    • 1
  • Karl-Heinz Zimmermann
    • 2
  • Israel Martínez-Pérez
    • 2
  1. 1.Cellular BiochemistryMax Planck Institute of BiochemistryMunichGermany
  2. 2.Institute of Computer TechnologyHamburg University of TechnologyGermany

Personalised recommendations