Advertisement

Introduction

  • Zoya Ignatova
  • Karl-Heinz Zimmermann
  • Israel Martínez-Pérez
Chapter

Abstract

This introductory chapter envisions DNA computing from the perspective of molecular information technology, which is brought into focus by three confluent research directions. First, the size of semiconductor devices approaches the scale of large macromolecules. Second, the enviable computational capabilities of living organisms are increasingly traced to molecular mechanisms. Third, techniques for engineering molecular control structures into living cells start to emerge.

Keywords

Synthetic Biology Turing Machine Molecular Computing Molecular Logic Gate Molecular Nanotechnology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman LM (1994) Molecular computation of solutions of combinatorial problems. Science 266:1021–1023CrossRefGoogle Scholar
  2. 2.
    Benner SA, Sismour AM (2005) Synthetic biology. Nature Rev Genetics 6:533–543CrossRefGoogle Scholar
  3. 3.
    Crane HR (1950) Principles and problems of biological growth. Sci Monthly 70:376–389Google Scholar
  4. 4.
    Carbone A, Seeman NC (2004) Molecular tiling and DNA self-assembly. LNCS 2340:219–240Google Scholar
  5. 5.
    Drexler KE (1992) Nanosystems, molecular machines, manufacturing and computation. Wiley and Sons, New YorkGoogle Scholar
  6. 6.
    Feynman RP (1961) Miniaturization. In: Gilbert DH (ed.) Reinhold, New York.Google Scholar
  7. 7.
    Geyer C, Battersby T, Benner SA (2003) Nucleobase pairing in expanded Watson-Crick-like genetic information systems. Structure 11:1485–1498CrossRefGoogle Scholar
  8. 8.
    Goodsell DS (2000) Biotechnology and nanotechnology. Sci Amer 88:230–237Google Scholar
  9. 9.
    Head T (1987) Formal language theory and DNA: an analysis of the generative capacity of specific recombination behaviors. Bull Math Biol 47:737–759MathSciNetGoogle Scholar
  10. 10.
    Kendrew J (1998) Encyclopedia of molecular biology. Blackwell Sci, OxfordGoogle Scholar
  11. 11.
    Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco H, Jares-Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotech 22:198–203CrossRefGoogle Scholar
  12. 12.
    Leavitt D (2006) The man who knew too much: Alan Turing and the invention of the computer. Norton, LondonGoogle Scholar
  13. 13.
    Rawls R (2000) Synthetic biology makes its debut. Chem Eng News 78:49–53Google Scholar
  14. 14.
    Seeman N (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247CrossRefGoogle Scholar
  15. 15.
    Taniguchi N (1974) On the basic concept of nanotechnology. Proc Intl Conf Prod Eng Tokyo, Japan Soc Prec EngGoogle Scholar
  16. 16.
    Wu R, Grossman L, Moldave K (1980) Recombinant DNA. Vol 68 Academic Press New YorkGoogle Scholar

Copyright information

© Springer-Verlag US 2008

Authors and Affiliations

  • Zoya Ignatova
    • 1
  • Karl-Heinz Zimmermann
    • 2
  • Israel Martínez-Pérez
    • 2
  1. 1.Cellular BiochemistryMax Planck Institute of BiochemistryMunichGermany
  2. 2.Institute of Computer TechnologyHamburg University of TechnologyGermany

Personalised recommendations