Advertisement

Role of Signal-responsive Class IIa Histone Deacetylases in Regulating Neuronal Activity-dependent Gene Expression

  • Brian Yee Hong Lam
  • Sangeeta Chawla

Abstract

Histone deacetylases (HDACs) act as transcriptional repressors by catalyzing the deacetylation of lysine residues on the N-terminal tails of histones and altering chromatin structure. Mammalian HDACs are grouped into 3 classes, Class I, II, and III based on their homology to known yeast enzymes. The Class II HDACs comprise of two subgroups of Class IIa and Class IIb enzymes. Class IIa histone deacetylases are subject to signal-dependent intracellular trafficking, which has emerged as an important regulatory mechanism for controlling gene expression through associated transcription factors. This chapter reviews our current understanding of the regulation and function of class IIa HDACs in neuronal cells.

Keywords

Histone Deacetylase Nuclear Export Serum Response Factor Cerebellar Granule Neuron Neuronal Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajamian, F., Salminen, A. and Reeben, M. (2004) Selective regulation of class I and class II histone deacetylases expression by inhibitors of histone deacetylases in cultured mouse neural cells. Neurosci. Lett. 365, 64–8.PubMedCrossRefGoogle Scholar
  2. Belfield, J. L., Whittaker, C., Cader, M. Z. and Chawla, S. (2006) Differential effects of Ca2+ and cAMP on transcription mediated by MEF2D and CREB in hippocampal neurons. J. Biol. Chem. 281, 27724–27732.PubMedCrossRefGoogle Scholar
  3. Berger, I., Bieniossek, C., Schaffitzel, C., Hassler, M., Santelli, E. and Richmond, T. J. (2003) Direct interaction of Ca2+/calmodulin inhibits histone deacetylase 5 repressor core binding to myocyte enhancer factor 2. J. Biol. Chem. 278, 17625–35.PubMedCrossRefGoogle Scholar
  4. Bolger, T. A. and Yao, T. P. (2005) Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J. Neurosci. 25, 9544–53.PubMedCrossRefGoogle Scholar
  5. Chang, S., Bezprozvannaya, S., Li, S. and Olson, E. N. (2005) An expression screen reveals modulators of class II histone deacetylase phosphorylation. Proc. Natl. Acad. Sci. USA 102, 8120–5.PubMedCrossRefGoogle Scholar
  6. Chang, S., McKinsey, T. A., Zhang, C. L., Richardson, J. A., Hill, J. A. and Olson, E. N. (2004a) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol. Cell Biol. 24, 8467–76.CrossRefGoogle Scholar
  7. Chang, S., Young, B. D., Li, S., Qi, X., Richardson, J. A. and Olson, E. N. (2006) Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126, 321–34.PubMedCrossRefGoogle Scholar
  8. Chang, S. H., Poser, S. and Xia, Z. (2004b) A novel role for serum response factor in neuronal survival. J. Neurosci. 24, 2277–85.CrossRefGoogle Scholar
  9. Chawla, S., Vanhoutte, P., Arnold, F. J., Huang, C. L. and Bading, H. (2003) Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J. Neurochem. 85, 151–9.PubMedCrossRefGoogle Scholar
  10. Davis, F. J., Gupta, M., Camoretti-Mercado, B., Schwartz, R. J. and Gupta, M. P. (2003) Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy. J. Biol. Chem. 278, 20047–58.PubMedCrossRefGoogle Scholar
  11. Dequiedt, F., Martin, M., Von Blume, J., Vertommen, D., Lecomte, E., Mari, N., Heinen, M. F., Bachmann, M., Twizere, J. C., Huang, M. C., Rider, M. H., Piwnica-Worms, H., Seufferlein, T. and Kettmann, R. (2006) New Role for hPar-1 Kinases EMK and C-TAK1 in Regulating Localization and Activity of Class IIa Histone Deacetylases. Mol. Cell Biol. 26, 7086–102.PubMedCrossRefGoogle Scholar
  12. Etkin, A., Alarcon, J. M., Weisberg, S. P., Touzani, K., Huang, Y. Y., Nordheim, A. and Kandel, E. R. (2006) A role in learning for SRF: deletion in the adult forebrain disrupts LTD and the formation of an immediate memory of a novel context. Neuron 50, 127–43.PubMedCrossRefGoogle Scholar
  13. Fischle, W., Dequiedt, F., Hendzel, M. J., Guenther, M. G., Lazar, M. A., Voelter, W. and Verdin, E. (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell 9, 45–57.PubMedCrossRefGoogle Scholar
  14. Flavell, S. W., Cowan, C. W., Kim, T. K., Greer, P. L., Lin, Y., Paradis, S., Griffith, E. C., Hu, L. S., Chen, C. and Greenberg, M. E. (2006) Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008–12.PubMedCrossRefGoogle Scholar
  15. Graef, I. A., Mermelstein, P. G., Stankunas, K., Neilson, J. R., Deisseroth, K., Tsien, R. W. and Crabtree, G. R. (1999) L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 401, 703–8.PubMedCrossRefGoogle Scholar
  16. Gregoire, S., Tremblay, A. M., Xiao, L., Yang, Q., Ma, K., Nie, J., Mao, Z., Wu, Z., Giguere, V. and Yang, X. J. (2006) Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation. J. Biol. Chem. 281, 4423–33.PubMedCrossRefGoogle Scholar
  17. Gregoire, S. and Yang, X. J. (2005) Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol. Cell Biol. 25, 2273–87.PubMedCrossRefGoogle Scholar
  18. Grozinger, C. M. and Schreiber, S. L. (2000) Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl. Acad. Sci. USA 97, 7835–40.PubMedCrossRefGoogle Scholar
  19. Guan, Z., Giustetto, M., Lomvardas, S., Kim, J. H., Miniaci, M. C., Schwartz, J. H., Thanos, D. and Kandel, E. R. (2002) Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 111, 483–93.PubMedCrossRefGoogle Scholar
  20. Kao, H. Y., Verdel, A., Tsai, C. C., Simon, C., Juguilon, H. and Khochbin, S. (2001) Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J. Biol. Chem. 276, 47496–507.PubMedCrossRefGoogle Scholar
  21. Karpinski, B. A., Morle, G. D., Huggenvik, J., Uhler, M. D. and Leiden, J. M. (1992) Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc. Natl. Acad. Sci. USA 89, 4820–4.Google Scholar
  22. Kirsh, O., Seeler, J. S., Pichler, A., Gast, A., Muller, S., Miska, E., Mathieu, M., Harel-Bellan, A., Kouzarides, T., Melchior, F. and Dejean, A. (2002) The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J. 21, 2682–91.PubMedCrossRefGoogle Scholar
  23. Knoll, B., Kretz, O., Fiedler, C., Alberti, S., Schutz, G., Frotscher, M. and Nordheim, A. (2006) Serum response factor controls neuronal circuit assembly in the hippocampus. Nat. Neurosci. 9, 195–204.PubMedCrossRefGoogle Scholar
  24. Lemercier, C., Verdel, A., Galloo, B., Curtet, S., Brocard, M. P. and Khochbin, S. (2000) mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J. Biol. Chem. 275, 15594–9.PubMedCrossRefGoogle Scholar
  25. Linseman, D. A., Bartley, C. M., Le, S. S., Laessig, T. A., Bouchard, R. J., Meintzer, M. K., Li, M. and Heidenreich, K. A. (2003) Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca(2depolarization-mediated cerebellar granule)//calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival. J. Biol. Chem. 278, 41472–81.PubMedCrossRefGoogle Scholar
  26. Liu, F., Dowling, M., Yang, X. J. and Kao, G. D. (2004) Caspase-mediated specific cleavage of human histone deacetylase 4. J. Biol. Chem. 279, 34537–46.PubMedCrossRefGoogle Scholar
  27. Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. and Greenberg, M. E. (1999) Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785–90.PubMedCrossRefGoogle Scholar
  28. McKinsey, T. A., Zhang, C. L., Lu, J. and Olson, E. N. (2000a) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–11.CrossRefGoogle Scholar
  29. McKinsey, T. A., Zhang, C. L. and Olson, E. N. (2000b) Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc. Natl. Acad. Sci. USA 97, 14400–5.CrossRefGoogle Scholar
  30. McKinsey, T. A., Zhang, C. L. and Olson, E. N. (2001) Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol. Cell Biol. 21, 6312–21.PubMedCrossRefGoogle Scholar
  31. McKinsey, T. A., Zhang, C. L. and Olson, E. N. (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem. Sci. 27, 40–7.PubMedCrossRefGoogle Scholar
  32. Miska, E. A., Karlsson, C., Langley, E., Nielsen, S. J., Pines, J. and Kouzarides, T. (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 18, 5099–107.PubMedCrossRefGoogle Scholar
  33. Miska, E. A., Langley, E., Wolf, D., Karlsson, C., Pines, J. and Kouzarides, T. (2001) Differential localization of HDAC4 orchestrates muscle differentiation. Nucleic Acids Res. 29, 3439–47.PubMedCrossRefGoogle Scholar
  34. Misra, R. P., Bonni, A., Miranti, C. K., Rivera, V. M., Sheng, M. and Greenberg, M. E. (1994) L-type voltage-sensitive calcium channel activation stimulates gene expression by a serum response factor-dependent pathway. J. Biol. Chem. 269, 25483–93.PubMedGoogle Scholar
  35. Paroni, G., Mizzau, M., Henderson, C., Del Sal, G., Schneider, C. and Brancolini, C. (2004) Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol. Biol. Cell 15, 2804–18.PubMedCrossRefGoogle Scholar
  36. Ramanan, N., Shen, Y., Sarsfield, S., Lemberger, T., Schutz, G., Linden, D. J. and Ginty, D. D. (2005) SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat. Neurosci. 8, 759–67.PubMedCrossRefGoogle Scholar
  37. Shalizi, A., Gaudilliere, B., Yuan, Z., Stegmuller, J., Shirogane, T., Ge, Q., Tan, Y., Schulman, B., Harper, J. W. and Bonni, A. (2006) A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311, 1012–7.PubMedCrossRefGoogle Scholar
  38. Treisman, R. (1987) Identification and purification of a polypeptide that binds to the c-fos serum response element. EMBO J. 6, 2711–7.PubMedGoogle Scholar
  39. Vega, R. B., Harrison, B. C., Meadows, E., Roberts, C. R., Papst, P. J., Olson, E. N. and McKinsey, T. A. (2004) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol. Cell Biol. 24, 8374–85.PubMedCrossRefGoogle Scholar
  40. Wang, A. H., Bertos, N. R., Vezmar, M., Pelletier, N., Crosato, M., Heng, H. H., Th’ng, J., Han, J. and Yang, X. J. (1999) HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol. Cell Biol. 19, 7816–27.PubMedGoogle Scholar
  41. Wang, A. H., Kruhlak, M. J., Wu, J., Bertos, N. R., Vezmar, M., Posner, B. I., Bazett-Jones, D. P. and Yang, X. J. (2000) Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol. Cell Biol. 20, 6904–12.PubMedCrossRefGoogle Scholar
  42. Wang, A. H. and Yang, X. J. (2001) Histone deacetylase 4 possesses intrinsic nuclear import and export signals. Mol. Cell Biol. 21, 5992–6005.PubMedCrossRefGoogle Scholar
  43. Youn, H. D., Grozinger, C. M. and Liu, J. O. (2000) Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4. J. Biol. Chem. 275, 22563–7.PubMedCrossRefGoogle Scholar
  44. Zhang, C. L., McKinsey, T. A., Chang, S., Antos, C. L., Hill, J. A. and Olson, E. N. (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–88.PubMedCrossRefGoogle Scholar
  45. Zhao, X., Ito, A., Kane, C. D., Liao, T. S., Bolger, T. A., Lemrow, S. M., Means, A. R. and Yao, T. P. (2001) The modular nature of histone deacetylase HDAC4 confers phosphorylation-dependent intracellular trafficking. J. Biol. Chem. 276, 35042–8.PubMedCrossRefGoogle Scholar
  46. Zhao, X., Sternsdorf, T., Bolger, T. A., Evans, R. M. and Yao, T. P. (2005) Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol. Cell Biol. 25, 8456–64.PubMedCrossRefGoogle Scholar
  47. Zhou, X., Richon, V. M., Wang, A. H., Yang, X. J., Rifkind, R. A. and Marks, P. A. (2000) Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras. Proc. Natl. Acad. Sci. USA 97, 14329–33.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Brian Yee Hong Lam
  • Sangeeta Chawla

There are no affiliations available

Personalised recommendations