Advertisement

CREB-Dependent Transcription and Synaptic Plasticity

  • Angel Barco
  • Dragana Jancic
  • Eric R. Kandel

Abstract

The CREB family of transcription factors are involved in controlling the transcriptional responses to a wide range of extracellular signals in neurons. In this chapter we discuss the role of the CREB pathway in synaptic plasticity. We first describe how learning-related stimuli, of different nature and intensity, can activate signaling pathways that converge on the induction of CRE-driven gene expression and how the nuclear response orchestrated by CREB can alter future synaptic activity. Second, we will discuss how CREB’s control of synaptic plasticity contributes to learning, memory and other complex brain function. Finally, we will briefly outline how dysfunction of this activation pathway can lead to psychiatric and neurological disorders.

Keywords

Synaptic Plasticity cAMP Response Element Binding Inducible cAMP Early Repressor cAMP Response Element Binding Phosphorylation cAMP Response Element Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alarcon, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R., and Barco, A. (2004) Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42, 947–959.PubMedCrossRefGoogle Scholar
  2. Alberini, C. M., Ghirardi, M., Metz, R., and Kandel, E. R. (1994) C/EBP is an immediate- early gene required for the consolidation of long- term facilitation in Aplysia. Cell 76, 1099–1114.PubMedCrossRefGoogle Scholar
  3. Bach, M. E., Barad, M., Son, H., Zhuo, M., Lu, Y. F., Shih, R., Mansuy, I., Hawkins, R. D., and Kandel, E. R. (1999) Age-related defects in spatial memory are correlated with de fects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc. Natl. Acad. Sci. USA 96, 5280–5285.PubMedCrossRefGoogle Scholar
  4. Bailey, C. H., and Kandel, E. R. (1993) Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426.PubMedCrossRefGoogle Scholar
  5. Balschun, D., Wolfer, D. P., Gass, P., Mantamadiotis, T., Welzl, H., Schutz, G., Frey, J. U., and Lipp, H. P. (2003) Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J. Neurosci. 23, 6304–6314.PubMedGoogle Scholar
  6. Barco, A., Alarcon, J. M., and Kandel, E. R. (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108, 689–703.PubMedCrossRefGoogle Scholar
  7. Barco, A., Bailey, C. H., and Kandel, E. R. (2006) Common molecular mechanisms in ex plicit and implicit memory. J. Neurochem. 97, 1520–1533.PubMedCrossRefGoogle Scholar
  8. Barco, A., and Kandel, E. R. (2005) Role of CREB and CBP in brain function. In Transcrip tion factors in the nervous system: Development, brain function and disease, G. Thiel, ed. Wiley-VCH.Google Scholar
  9. Barco, A., Patterson, S., Alarcon, J. M., Gromova, P., Mata-Roig, M., Morozov, A., and Kandel, E. R. (2005) Gene Expression Profiling of Facilitated L-LTP in VP16-CREB Mice Reveals that BDNF Is Critical for the Maintenance of LTP and Its Synaptic Capture. Neuron 48, 123–137.PubMedCrossRefGoogle Scholar
  10. Barco, A., Pittenger, C., and Kandel, E. R. (2003) CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. Expert Opin. Ther. Targets 7, 101–114.PubMedCrossRefGoogle Scholar
  11. Bartsch, D., Casadio, A., Karl, K. A., Serodio, P., and Kandel, E. R. (1998) CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 95, 211–223.PubMedCrossRefGoogle Scholar
  12. Bartsch, D., Ghirardi, M., Skehel, P. A., Karl, K. A., Herder, S. P., Chen, M., Bailey, C. H., and Kandel, E. R. (1995) Aplysia CREB2 represses long-term facilitation: relief of re pression converts transient facilitation into long-term functional and structural change. Cell 83, 979–992.PubMedCrossRefGoogle Scholar
  13. Bates, E. A., Victor, M., Jones, A. K., Shi, Y., and Hart, A. C. (2006) Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J. Neurosci. 26, 2830–2838.PubMedCrossRefGoogle Scholar
  14. Bito, H., Deisseroth, K., and Tsien, R. W. (1996) CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214.PubMedCrossRefGoogle Scholar
  15. Blendy, J. A., Kaestner, K. H., Schmid, W., Gass, P., and Schutz, G. (1996) Targeting of the CREB gene leads to up-regulation of a novel CREB mRNA isoform. EMBO J. 15, 1098–1106.PubMedGoogle Scholar
  16. Bonni, A., Brunet, A., West, A. E., Datta, S. R., Takasu, M. A., and Greenberg, M. E. (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362.PubMedCrossRefGoogle Scholar
  17. Bourtchouladze, R., Lidge, R., Catapano, R., Stanley, J., Gossweiler, S., Romashko, D., Scott, R., and Tully, T. (2003) A mouse model of Rubinstein-Taybi syndrome: Defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc. Natl. Acad. Sci. USA 100, 10518–10522.PubMedCrossRefGoogle Scholar
  18. Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., and Silva, A. J. (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68.PubMedCrossRefGoogle Scholar
  19. Brightwell, J. J., Gallagher, M., and Colombo, P. J. (2004) Hippocampal CREB1 but not CREB2 is decreased in aged rats with spatial memory impairments. Neurobiol Learn Mem 81, 19–26.PubMedCrossRefGoogle Scholar
  20. Brightwell, J. J., Smith, C. A., Countryman, R. A., Neve, R. L., and Colombo, P. J. (2005) Hippocampal overexpression of mutant CREB blocks long-term, but not short-term mem ory for a socially transmitted food preference. Learn. Mem. 12, 12–17.PubMedCrossRefGoogle Scholar
  21. Brunelli, M., Castellucci, V., and Kandel, E. R. (1976) Synaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP. Science 194, 1178–1181.PubMedCrossRefGoogle Scholar
  22. Byers, D., Davis, R. L., and Kiger, J. A., Jr. (1981) Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature 289, 79–81.PubMedCrossRefGoogle Scholar
  23. Canettieri, G., Morantte, I., Guzman, E., Asahara, H., Herzig, S., Anderson, S. D., Yates, J. R., 3rd, and Montminy, M. (2003) Attenuation of a phosphorylation-dependent activator by an HDAC-PP1 complex. Nat. Struct. Biol. 10, 175–181.PubMedCrossRefGoogle Scholar
  24. Carlezon, W. A., Jr., Duman, R. S., and Nestler, E. J. (2005) The many faces of CREB. Trends Neurosci. 28, 436–445.PubMedCrossRefGoogle Scholar
  25. Casadio, A., Martin, K. C., Giustetto, M., Zhu, H., Chen, M., Bartsch, D., Bailey, C. H., and Kandel, E. R. (1999) A transient, neuron-wide form of CREB-mediated long-term facili tation can be stabilized at specific synapses by local protein synthesis. Cell 99, 221–237.PubMedCrossRefGoogle Scholar
  26. Cha-Molstad, H., Keller, D. M., Yochum, G. S., Impey, S., and Goodman, R. H. (2004) Cell-type-specific binding of the transcription factor CREB to the cAMP-response element. Proc. Natl. Acad. Sci. USA 101, 13572–13577.PubMedCrossRefGoogle Scholar
  27. Chan, H. M., and La Thangue, N. B. (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114, 2363–2373.PubMedGoogle Scholar
  28. Chrivia, J. C., Kwok, R. P., Lamb, N., Hagiwara, M., Montminy, M. R., and Goodman, R. H. (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859.PubMedCrossRefGoogle Scholar
  29. Chung, Y. H., Kim, E. J., Shin, C. M., Joo, K. M., Kim, M. J., Woo, H. W., and Cha, C. I. (2002) Age-related changes in CREB binding protein immunoreactivity in the cerebral cortex and hippocampus of rats. Brain Res. 956, 312–318.PubMedCrossRefGoogle Scholar
  30. Cohen, P. (1989) The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 58, 453–508.PubMedCrossRefGoogle Scholar
  31. Comerford, K. M., Leonard, M. O., Karhausen, J., Carey, R., Colgan, S. P., and Taylor, C. T. (2003) Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc. Natl. Acad. Sci. USA 100, 986–991.PubMedCrossRefGoogle Scholar
  32. Conkright, M. D., Guzman, E., Flechner, L., Su, A. I., Hogenesch, J. B., and Montminy, M. (2003) Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol. Cell 11, 1101–1108.PubMedCrossRefGoogle Scholar
  33. Conti, A. C., and Blendy, J. A. (2004) Regulation of antidepressant activity by cAMP re sponse element binding proteins. Mol. Neurobiol. 30, 143–155.PubMedCrossRefGoogle Scholar
  34. Dash, P. K., Karl, K. A., Colicos, M. A., Prywes, R., and Kandel, E. R. (1991) cAMP re sponse element-binding protein is activated by Ca2+/calmodulin- as well as cAMP- dependent protein kinase. Proc. Natl. Acad. Sci. USA 88, 5061–5065.PubMedCrossRefGoogle Scholar
  35. Dawson, T. M., and Ginty, D. D. (2002) CREB family transcription factors inhibit neuronal suicide. Nat. Med. 8, 450–451.PubMedCrossRefGoogle Scholar
  36. Deisseroth, K., Bito, H., and Tsien, R. W. (1996) Signaling from synapse to nucleus: postsyn aptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16, 89–101.PubMedCrossRefGoogle Scholar
  37. Deisseroth, K., Heist, E. K., and Tsien, R. W. (1998) Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198–202.PubMedCrossRefGoogle Scholar
  38. Deisseroth, K., and Tsien, R. W. (2002) Dynamic multiphosphorylation passwords for activ ity-dependent gene expression. Neuron 34, 179–182.PubMedCrossRefGoogle Scholar
  39. Dudai, Y., Jan, Y. N., Byers, D., Quinn, W. G., and Benzer, S. (1976) dunce, a mutant of Drosophila deficient in learning. Proc. Natl. Acad. Sci. USA 73, 1684–1688.PubMedCrossRefGoogle Scholar
  40. Dudai, Y., Uzzan, A., and Zvi, S. (1983) Abnormal activity of adenylate cyclase in the Dro sophila memory mutant rutabaga. Neurosci. Lett. 42, 207–212.PubMedCrossRefGoogle Scholar
  41. Euskirchen, G., Royce, T. E., Bertone, P., Martone, R., Rinn, J. L., Nelson, F. K., Sayward, F., Luscombe, N. M., Miller, P., Gerstein, M., et al. (2004) CREB binds to multiple loci on human chromosome 22. Mol. Cell Biol. 24, 3804–3814.PubMedCrossRefGoogle Scholar
  42. Ferrante, R. J., Kubilus, J. K., Lee, J., Ryu, H., Beesen, A., Zucker, B., Smith, K., Kowall, N. W., Ratan, R. R., Luthi-Carter, R., and Hersch, S. M. (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J. Neurosci. 23, 9418–9427.PubMedGoogle Scholar
  43. Frey, U., and Morris, R. G. (1997) Synaptic tagging and long-term potentiation. Nature 385, 533–536.PubMedCrossRefGoogle Scholar
  44. Frey, U., and Morris, R. G. (1998) Weak before strong: dissociating synaptic tagging and plasticity-factor accounts of late-LTP. Neuropharmacol. 37, 545–552.CrossRefGoogle Scholar
  45. Gass, P., Wolfer, D. P., Balschun, D., Rudolph, D., Frey, U., Lipp, H. P., and Schutz, G. (1998) Deficits in memory tasks of mice with CREB mutations depend on gene dosage. Learn. Mem. 5, 274–288.PubMedGoogle Scholar
  46. Gau, D., Lemberger, T., von Gall, C., Kretz, O., Le Minh, N., Gass, P., Schmid, W., Schibler, U., Korf, H. W., and Schutz, G. (2002) Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34, 245–253.PubMedCrossRefGoogle Scholar
  47. Genoux, D., Haditsch, U., Knobloch, M., Michalon, A., Storm, D., and Mansuy, I. M. (2002) Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 418, 970–975.PubMedCrossRefGoogle Scholar
  48. Gong, B., Cao, Z., Zheng, P., Vitolo, O. V., Liu, S., Staniszewski, A., Moolman, D., Zhang, H., Shelanski, M., and Arancio, O. (2006) Ubiquitin Hydrolase Uch-L1 Rescues beta-Amyloid-Induced Decreases in Synaptic Function and Contextual Memory. Cell 126, 775–788.PubMedCrossRefGoogle Scholar
  49. Gong, B., Vitolo, O. V., Trinchese, F., Liu, S., Shelanski, M., and Arancio, O. (2004) Persis tent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J. Clin. Invest. 114, 1624–1634.PubMedCrossRefGoogle Scholar
  50. Gonzalez, G. A., Yamamoto, K. K., Fischer, W. H., Karr, D., Menzel, P., Biggs, W., 3rd, Vale, W. W., and Montminy, M. R. (1989) A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature 337, 749–752.PubMedCrossRefGoogle Scholar
  51. Govindarajan, A., Kelleher, R. J., and Tonegawa, S. (2006) A clustered plasticity model of long-term memory engrams. Nat. Rev. Neurosci. 7, 575–583.PubMedCrossRefGoogle Scholar
  52. Graves, L., Dalvi, A., Lucki, I., Blendy, J. A., and Abel, T. (2002) Behavioral analysis of CREB alphadelta mutation on a B6/129 F1 hybrid background. Hippocampus 12, 18–26.PubMedCrossRefGoogle Scholar
  53. Guan, Z., Giustetto, M., Lomvardas, S., Kim, J. H., Miniaci, M. C., Schwartz, J. H., Thanos, D., and Kandel, E. R. (2002) Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 111, 483–493.PubMedCrossRefGoogle Scholar
  54. Gum, R. J., Gaede, L. L., Heindel, M. A., Waring, J. F., Trevillyan, J. M., Zinker, B. A., Stark, M. E., Wilcox, D., Jirousek, M. R., Rondinone, C. M., and Ulrich, R. G. (2003) Antisense protein tyrosine phosphatase 1B reverses activation of p38 mitogen-activated protein kinase in liver of ob/ob mice. Mol. Endocrinol. 17, 1131–1143.PubMedCrossRefGoogle Scholar
  55. Guzowski, J. F., and McGaugh, J. L. (1997) Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consoli dation of memory for water maze training. Proc. Natl. Acad. Sci. USA 94, 2693–2698.PubMedCrossRefGoogle Scholar
  56. Guzowski, J. F., Timlin, J. A., Roysam, B., McNaughton, B. L., Worley, P. F., and Barnes, C. A. (2005) Mapping behaviorally relevant neural circuits with immediate-early gene expression. Curr. Opin. Neurobiol. 15, 599–606.PubMedCrossRefGoogle Scholar
  57. Habener, J. F., Miller, C. P., and Vallejo, M. (1995) cAMP-dependent regulation of gene transcription by cAMP response element-binding protein and cAMP response element modulator. Vitam. Horm. 51, 1–57.PubMedCrossRefGoogle Scholar
  58. Hardingham, G. E., Fukunaga, Y., and Bading, H. (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405–414.PubMedGoogle Scholar
  59. Harum, K. H., Alemi, L., and Johnston, M. V. (2001) Cognitive impairment in Coffin-Lowry syndrome correlates with reduced RSK2 activation. Neurology 56, 207–214.PubMedGoogle Scholar
  60. Hayashi, Y., and Majewska, A. K. (2005) Dendritic spine geometry: functional implication and regulation. Neuron 46, 529–532.PubMedCrossRefGoogle Scholar
  61. Hegde, A. N., Inokuchi, K., Pei, W., Casadio, A., Ghirardi, M., Chain, D. G., Martin, K. C., Kandel, E. R., and Schwartz, J. H. (1997) Ubiquitin C-terminal hydrolase is an im mediate-early gene essential for long-term facilitation in Aplysia. Cell 89, 115–126.PubMedCrossRefGoogle Scholar
  62. Higgins, D. S., Hoyt, K. R., Baic, C., Vensel, J., and Sulka, M. (1999) Metabolic and gluta matergic disturbances in the Huntington’s disease transgenic mouse. Ann. NY Acad. Sci. 893, 298–300.PubMedCrossRefGoogle Scholar
  63. Hockly, E., Richon, V. M., Woodman, B., Smith, D. L., Zhou, X., Rosa, E., Sathasivam, K., Ghazi-Noori, S., Mahal, A., Lowden, P. A., et al. (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 100, 2041–2046.PubMedCrossRefGoogle Scholar
  64. Hoeffler, J. P., Meyer, T. E., Waeber, G., and Habener, J. F. (1990) Multiple adenosine 3’,5’-cyclic monophosphate response element DNA-binding proteins generated by gene diversification and alternative exon splicing. Mol. Endocrinol. 4, 920–930.PubMedGoogle Scholar
  65. Hu, S. C., Chrivia, J., and Ghosh, A. (1999) Regulation of CBP-mediated transcription by neuronal calcium signaling. Neuron 22, 799–808.PubMedCrossRefGoogle Scholar
  66. Huang, H., Cheville, J. C., Pan, Y., Roche, P. C., Schmidt, L. J., and Tindall, D. J. (2001) PTEN induces chemosensitivity in PTEN-mutated prostate cancer cells by suppression of Bcl-2 expression. J. Biol. Chem. 276, 38830–38836.PubMedCrossRefGoogle Scholar
  67. Huang, Y. Y., Pittenger, C., and Kandel, E. R. (2004) A form of long-lasting, learning-related synaptic plasticity in the hippocampus induced by heterosynaptic low-frequency pairing. Proc. Natl. Acad. Sci. USA 101, 859–864.PubMedCrossRefGoogle Scholar
  68. Hummler, E., Cole, T. J., Blendy, J. A., Ganss, R., Aguzzi, A., Schmid, W., Beermann, F., and Schutz, G. (1994) Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc. Natl. Acad. Sci. USA 91, 5647–5651.PubMedCrossRefGoogle Scholar
  69. Igarashi, S., Morita, H., Bennett, K. M., Tanaka, Y., Engelender, S., Peters, M. F., Cooper, J. K., Wood, J. D., Sawa, A., and Ross, C. A. (2003) Inducible PC12 cell model of Huntington’s disease shows toxicity and decreased histone acetylation. Neuroreport 14, 565–568.PubMedCrossRefGoogle Scholar
  70. Impey, S., Fong, A. L., Wang, Y., Cardinaux, J. R., Fass, D. M., Obrietan, K., Wayman, G. A., Storm, D. R., Soderling, T. R., and Goodman, R. H. (2002) Phosphorylation of CBP mediates transcriptional activation by neural activity and CaM kinase IV. Neuron 34, 235–244.PubMedCrossRefGoogle Scholar
  71. Impey, S., Mark, M., Villacres, E. C., Poser, S., Chavkin, C., and Storm, D. R. (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973–982.PubMedCrossRefGoogle Scholar
  72. Impey, S., McCorkle, S. R., Cha-Molstad, H., Dwyer, J. M., Yochum, G. S., Boss, J. M., McWeeney, S., Dunn, J. J., Mandel, G., and Goodman, R. H. (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041–1054.PubMedGoogle Scholar
  73. Impey, S., Smith, D. M., Obrietan, K., Donahue, R., Wade, C., and Storm, D. R. (1998) Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1, 595–601.PubMedCrossRefGoogle Scholar
  74. Johannessen, M., Delghandi, M. P., and Moens, U. (2004) What turns CREB on? Cell Signal 16, 1211–1227.Google Scholar
  75. Josselyn, S. A., Kida, S., and Silva, A. J. (2004) Inducible repression of CREB function disrupts amygdala-dependent memory. Neurobiol. Learn. Mem. 82, 159–163.PubMedCrossRefGoogle Scholar
  76. Josselyn, S. A., Shi, C., Carlezon, W. A., Jr., Neve, R. L., Nestler, E. J., and Davis, M. (2001) Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J. Neurosci. 21, 2404–2412.PubMedGoogle Scholar
  77. Jouvenceau, A., Hedou, G., Potier, B., Kollen, M., Dutar, P., and Mansuy, I. M. (2006) Partial inhibition of PP1 alters bidirectional synaptic plasticity in the hippocampus. Eur. J. Neuro sci. 24, 564–572.CrossRefGoogle Scholar
  78. Kaczmarek, L., and Chaudhuri, A. (1997) Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res. Brain Res. Rev. 23, 237–256.PubMedCrossRefGoogle Scholar
  79. Kandel, E. R. (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038.PubMedCrossRefGoogle Scholar
  80. Kida, S., Josselyn, S. A., de Ortiz, S. P., Kogan, J. H., Chevere, I., Masushige, S., and Silva, A. J. (2002) CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5, 348–355.PubMedCrossRefGoogle Scholar
  81. Kogan, J. H., Frankland, P. W., Blendy, J. A., Coblentz, J., Marowitz, Z., Schutz, G., and Silva, A. J. (1997) Spaced training induces normal long-term memory in CREB mutant mice. Curr. Biol. 7, 1–11.PubMedCrossRefGoogle Scholar
  82. Kornhauser, J. M., Cowan, C. W., Shaywitz, A. J., Dolmetsch, R. E., Griffith, E. C., Hu, L. S., Haddad, C., Xia, Z., and Greenberg, M. E. (2002) CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34, 221–233.PubMedCrossRefGoogle Scholar
  83. Korzus, E., Rosenfeld, M. G., and Mayford, M. (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961–972.PubMedCrossRefGoogle Scholar
  84. Lamarre-Vincent, N., and Hsieh-Wilson, L. C. (2003) Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J. Am. Chem. Soc. 125, 6612–6613.PubMedCrossRefGoogle Scholar
  85. Lamprecht, R., and LeDoux, J. (2004) Structural plasticity and memory. Nat. Rev. Neurosci. 5, 45–54.PubMedCrossRefGoogle Scholar
  86. Lang, C., Barco, A., Zablow, L., Kandel, E. R., Siegelbaum, S. A., and Zakharenko, S. S. (2004) Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proc. Natl. Acad. Sci. USA 101, 16665–16670.PubMedCrossRefGoogle Scholar
  87. Lee, P. R., Cohen, J. E., Becker, K. G., and Fields, R. D. (2005) Gene expression in the conversion of early-phase to late-phase long-term potentiation. Ann. NY Acad. Sci. 1048, 259–271.PubMedCrossRefGoogle Scholar
  88. Lin, C. H., Yeh, S. H., Lu, K. T., Leu, T. H., Chang, W. C., and Gean, P. W. (2001) A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31, 841–851.PubMedCrossRefGoogle Scholar
  89. Liu, Y. Z., Thomas, N. S., and Latchman, D. S. (1999) CBP associates with the p42/p44 MAPK enzymes and is phosphorylated following NGF treatment. Neuroreport 10, 1239–1243.PubMedCrossRefGoogle Scholar
  90. Lonze, B. E., and Ginty, D. D. (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623.PubMedCrossRefGoogle Scholar
  91. Lonze, B. E., Riccio, A., Cohen, S., and Ginty, D. D. (2002) Apoptosis, axonal growth de fects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34, 371–385.PubMedCrossRefGoogle Scholar
  92. Lu, Q., Hutchins, A. E., Doyle, C. M., Lundblad, J. R., and Kwok, R. P. (2003) Acetylation of cAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances CREB-dependent transcription. J. Biol. Chem. 278, 15727–15734.PubMedCrossRefGoogle Scholar
  93. Lu, Y. F., Kandel, E. R., and Hawkins, R. D. (1999) Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J. Neurosci. 19, 10250–10261.PubMedGoogle Scholar
  94. Mantamadiotis, T., Lemberger, T., Bleckmann, S. C., Kern, H., Kretz, O., Martin Villalba, A., Tronche, F., Kellendonk, C., Gau, D., Kapfhammer, J., et al. (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat. Genet. 31, 47–54.PubMedCrossRefGoogle Scholar
  95. Marie, H., Morishita, W., Yu, X., Calakos, N., and Malenka, R. C. (2005) Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 45, 741–752.PubMedCrossRefGoogle Scholar
  96. Martin, K. C., Casadio, A., Zhu, H., E, Y., Rose, J. C., Chen, M., Bailey, C. H., and Kandel, E. R. (1997) Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91, 927–938.PubMedCrossRefGoogle Scholar
  97. Martin, K. C., and Kosik, K. S. (2002) Synaptic tagging – who’s it? Nat. Rev. Neurosci. 3, 813–820.Google Scholar
  98. Martin, S. J., Grimwood, P. D., and Morris, R. G. (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711.PubMedCrossRefGoogle Scholar
  99. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C., and Kasai, H. (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766.PubMedCrossRefGoogle Scholar
  100. Mayr, B., and Montminy, M. (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609.PubMedCrossRefGoogle Scholar
  101. McCampbell, A., Taylor, J. P., Taye, A. A., Robitschek, J., Li, M., Walcott, J., Merry, D., Chai, Y., Paulson, H., Sobue, G., and Fischbeck, K. H. (2000) CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9, 2197–2202.PubMedCrossRefGoogle Scholar
  102. McClung, C. A., and Nestler, E. J. (2003) Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat. Neurosci. 6, 1208–1215.PubMedCrossRefGoogle Scholar
  103. McMurray, C. T. (2001) Huntington’s disease: new hope for therapeutics. Trends Neurosci. 24, S32–38.PubMedCrossRefGoogle Scholar
  104. Mellstrom, B., Naranjo, J. R., Foulkes, N. S., Lafarga, M., and Sassone-Corsi, P. (1993) Transcriptional response to cAMP in brain: specific distribution and induction of CREM antagonists. Neuron 10, 655–665.PubMedCrossRefGoogle Scholar
  105. Mioduszewska, B., Jaworski, J., and Kaczmarek, L. (2003) Inducible cAMP early repressor (ICER) in the nervous system–a transcriptional regulator of neuronal plasticity and pro grammed cell death. J. Neurochem. 87, 1313–1320.PubMedCrossRefGoogle Scholar
  106. Montminy, M. R., and Bilezikjian, L. M. (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328, 175–178.PubMedCrossRefGoogle Scholar
  107. Morris, R. G. (2006) Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. Eur. J. Neurosci. 23, 2829–2846.PubMedCrossRefGoogle Scholar
  108. Nagerl, U. V., Eberhorn, N., Cambridge, S. B., and Bonhoeffer, T. (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44, 759–767.PubMedCrossRefGoogle Scholar
  109. Navakkode, S., Sajikumar, S., and Frey, J. U. (2004) The type IV-specific phosphodiesterase inhibitor rolipram and its effect on hippocampal long-term potentiation and synaptic tagging. J. Neurosci. 24, 7740–7744.PubMedCrossRefGoogle Scholar
  110. Nestler, E. J. (2001) Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119–128.PubMedCrossRefGoogle Scholar
  111. Nibuya, M., Nestler, E. J., and Duman, R. S. (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J. Neurosci. 16, 2365–2372.PubMedGoogle Scholar
  112. Nucifora, F. C., Jr., Sasaki, M., Peters, M. F., Huang, H., Cooper, J. K., Yamada, M., Takaha shi, H., Tsuji, S., Troncoso, J., Dawson, V. L., et al. (2001) Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291, 2423–2428.PubMedCrossRefGoogle Scholar
  113. Obrietan, K., and Hoyt, K. R. (2004) CRE-mediated transcription is increased in Huntington’s disease transgenic mice. J. Neurosci. 24, 791–796.PubMedCrossRefGoogle Scholar
  114. Ostroff, L. E., Fiala, J. C., Allwardt, B., and Harris, K. M. (2002) Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35, 535–545.PubMedCrossRefGoogle Scholar
  115. Pandey, S. C., Chartoff, E. H., Carlezon, W. A., Jr., Zou, J., Zhang, H., Kreibich, A. S., Blendy, J. A., and Crews, F. T. (2005) CREB gene transcription factors: role in molecular mechanisms of alcohol and drug addiction. Alcohol Clin. Exp. Res. 29, 176–184.PubMedCrossRefGoogle Scholar
  116. Park, C. S., Gong, R., Stuart, J., and Tang, S. J. (2006) Molecular network and chromosomal clustering of genes involved in synaptic plasticity in the hippocampus. J. Biol. Chem. 281, 30195–30211.PubMedCrossRefGoogle Scholar
  117. Perazzona, B., Isabel, G., Preat, T., and Davis, R. L. (2004) The role of cAMP response element-binding protein in Drosophila long-term memory. J. Neurosci. 24, 8823–8828.PubMedCrossRefGoogle Scholar
  118. Perkinton, M. S., Ip, J. K., Wood, G. L., Crossthwaite, A. J., and Williams, R. J. (2002) Phos phatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (ERK1/2), Akt/PKB and CREB in striatal neurones. J. Neurochem. 80, 239–254.PubMedCrossRefGoogle Scholar
  119. Pham, T. A., Impey, S., Storm, D. R., and Stryker, M. P. (1999) CRE-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period [pub lished erratum appears in Neuron 1999 Mar;22(3):635]. Neuron 22, 63–72.PubMedCrossRefGoogle Scholar
  120. Pittenger, C., Huang, Y. Y., Paletzki, R. F., Bourtchouladze, R., Scanlin, H., Vronskaya, S., and Kandel, E. R. (2002) Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 34, 447–462.PubMedCrossRefGoogle Scholar
  121. Pittenger, C., and Kandel, E. (1998) A genetic switch for long-term memory. C. R. Acad. Sci. III 321, 91–96.PubMedGoogle Scholar
  122. Radhakrishnan, I., Perez-Alvarado, G. C., Parker, D., Dyson, H. J., Montminy, M. R., and Wright, P. E. (1997) Solution structure of the KIX domain of CBP bound to the trans activation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741–752.PubMedCrossRefGoogle Scholar
  123. Rammes, G., Steckler, T., Kresse, A., Schutz, G., Zieglgansberger, W., and Lutz, B. (2000) Synaptic plasticity in the basolateral amygdala in transgenic mice expressing dominant-negative cAMP response element-binding protein (CREB) in forebrain. Eur. J. Neurosci. 12, 2534–2546.PubMedCrossRefGoogle Scholar
  124. Riccio, A., Ahn, S., Davenport, C. M., Blendy, J. A., and Ginty, D. D. (1999) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–2361.PubMedCrossRefGoogle Scholar
  125. Sajikumar, S., and Frey, J. U. (2004) Resetting of ’synaptic tags’ is time- and activity-dependent in rat hippocampal CA1 in vitro. Neuroscience 129, 503–507.PubMedCrossRefGoogle Scholar
  126. Schuman, E. M., Dynes, J. L., and Steward, O. (2006) Synaptic regulation of translation of dendritic mRNAs. J. Neurosci. 26, 7143–7146.PubMedCrossRefGoogle Scholar
  127. Segal, M. (2005) Dendritic spines and long-term plasticity. Nat. Rev. Neurosci. 6, 277–284.PubMedCrossRefGoogle Scholar
  128. Sheng, M., Thompson, M. A., and Greenberg, M. E. (1991) CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427–1430.PubMedCrossRefGoogle Scholar
  129. Si, K., Giustetto, M., Etkin, A., Hsu, R., Janisiewicz, A. M., Miniaci, M. C., Kim, J. H., Zhu, H., and Kandel, E. R. (2003) A neuronal isoform of CPEB regulates local protein syn thesis and stabilizes synapse-specific long-term facilitation in aplysia. Cell 115, 893–904.PubMedCrossRefGoogle Scholar
  130. Steffan, J. S., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B. L., Kazantsev, A., Schmidt, E., Zhu, Y. Z., Greenwald, M., et al. (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739–743.PubMedCrossRefGoogle Scholar
  131. Steffan, J. S., Kazantsev, A., Spasic-Boskovic, O., Greenwald, M., Zhu, Y. Z., Gohler, H., Wanker, E. E., Bates, G. P., Housman, D. E., and Thompson, L. M. (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 97, 6763–6768.PubMedCrossRefGoogle Scholar
  132. Steward, O., and Schuman, E. M. (2003) Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40, 347–359.PubMedCrossRefGoogle Scholar
  133. Steward, O., and Worley, P. (2001) Localization of mRNAs at synaptic sites on dendrites. Results Probl. Cell Differ. 34, 1–26.PubMedGoogle Scholar
  134. Sugars, K. L., Brown, R., Cook, L. J., Swartz, J., and Rubinsztein, D. C. (2004) Decreased cAMP response element-mediated transcription: an early event in exon 1 and full-length cell models of Huntington’s disease that contributes to polyglutamine pathogenesis. J. Biol. Chem. 279, 4988–4999.PubMedCrossRefGoogle Scholar
  135. Sun, P., Enslen, H., Myung, P. S., and Maurer, R. A. (1994) Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8, 2527–2539.PubMedCrossRefGoogle Scholar
  136. Sutton, M. A., and Schuman, E. M. (2005) Local translational control in dendrites and its role in long-term synaptic plasticity. J Neurobiol. 64, 116–131.PubMedCrossRefGoogle Scholar
  137. Thomas, G. M., and Huganir, R. L. (2004) MAPK cascade signalling and synaptic plasticity. Nat. Rev. Neurosci. 5, 173–183.PubMedCrossRefGoogle Scholar
  138. Thome, J., Sakai, N., Shin, K., Steffen, C., Zhang, Y. J., Impey, S., Storm, D., and Duman, R. S. (2000) cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J. Neurosci. 20, 4030–4036.PubMedGoogle Scholar
  139. Tischmeyer, W., and Grimm, R. (1999) Activation of immediate early genes and memory formation. Cell. Mol. Life Sci. 55, 564–574.PubMedCrossRefGoogle Scholar
  140. Trivier, E., De Cesare, D., Jacquot, S., Pannetier, S., Zackai, E., Young, I., Mandel, J. L., Sassone-Corsi, P., and Hanauer, A. (1996) Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature 384, 567–570.PubMedCrossRefGoogle Scholar
  141. Tully, T., Bourtchouladze, R., Scott, R., and Tallman, J. (2003) Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug Discov. 2, 267–277.PubMedCrossRefGoogle Scholar
  142. Vitolo, O. V., Sant’Angelo, A., Costanzo, V., Battaglia, F., Arancio, O., and Shelanski, M. (2002) Amyloid beta -peptide inhibition of the PKA/CREB pathway and long-term poten tiation: reversibility by drugs that enhance cAMP signaling. Proc. Natl. Acad. Sci. USA 99, 13217–13221.PubMedCrossRefGoogle Scholar
  143. Waddell, S., and Quinn, W. G. (2001) Flies, genes, and learning. Annu. Rev. Neurosci. 24, 1283–1309.PubMedCrossRefGoogle Scholar
  144. Walton, M. R., and Dragunow, I. (2000) Is CREB a key to neuronal survival? Trends Neuro sci. 23, 48–53.Google Scholar
  145. West, A. E., Griffith, E. C., and Greenberg, M. E. (2002) Regulation of transcription factors by neuronal activity. Nat. Rev. Neurosci. 3, 921–931.PubMedCrossRefGoogle Scholar
  146. Wood, M. A., Kaplan, M. P., Park, A., Blanchard, E. J., Oliveira, A. M., Lombardi, T. L., and Abel, T. (2005) Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn. Mem. 12, 111–119.PubMedCrossRefGoogle Scholar
  147. Wu, G. Y., Deisseroth, K., and Tsien, R. W. (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 98, 2808–2813.PubMedCrossRefGoogle Scholar
  148. Wu, X., and McMurray, C. T. (2001) Calmodulin kinase II attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein. J. Biol. Chem. 276, 1735–1741.PubMedCrossRefGoogle Scholar
  149. Xu, W., Chen, H., Du, K., Asahara, H., Tini, M., Emerson, B. M., Montminy, M., and Evans, R. M. (2001) A transcriptional switch mediated by cofactor methylation. Science 294, 2507–2511.PubMedCrossRefGoogle Scholar
  150. Yin, J. C., Del Vecchio, M., Zhou, H., and Tully, T. (1995) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Droso phila. Cell 81, 107–115.PubMedCrossRefGoogle Scholar
  151. Yin, J. C., Wallach, J. S., Del Vecchio, M., Wilder, E. L., Zhou, H., Quinn, W. G., and Tully, T. (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58.PubMedCrossRefGoogle Scholar
  152. Young, J. Z., Isiegas, C., Abel, T., and Nguyen, P. V. (2006) Metaplasticity of the late-phase of long-term potentiation: a critical role for protein kinase A in synaptic tagging. Eur. J. Neurosci. 23, 1784–1794.PubMedCrossRefGoogle Scholar
  153. Yu, Z. X., Li, S. H., Nguyen, H. P., and Li, X. J. (2002) Huntingtin inclusions do not deplete polyglutamine-containing transcription factors in HD mice. Hum Mol Genet 11, 905–914.PubMedCrossRefGoogle Scholar
  154. Zanger, K., Radovick, S., and Wondisford, F. E. (2001) CREB binding protein recruitment to the transcription complex requires growth factor-dependent phosphorylation of its GF box. Mol. Cell 7, 551–558.PubMedCrossRefGoogle Scholar
  155. Zhang, J. J., Okutani, F., Inoue, S., and Kaba, H. (2003) Activation of the cyclic AMP re sponse element-binding protein signaling pathway in the olfactory bulb is required for the acquisition of olfactory aversive learning in young rats. Neuroscience 117, 707–713.PubMedCrossRefGoogle Scholar
  156. Zhang, X., Odom, D. T., Koo, S. H., Conkright, M. D., Canettieri, G., Best, J., Chen, H., Jenner, R., Herbolsheimer, E., Jacobsen, E., et al. (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl. Acad. Sci. USA 102, 4459–4464.Google Scholar
  157. Zhou, Q., Homma, K. J., and Poo, M. M. (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757.PubMedCrossRefGoogle Scholar
  158. Zuo, Y., Lin, A., Chang, P., and Gan, W. B. (2005) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46, 181–189.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Angel Barco
  • Dragana Jancic
  • Eric R. Kandel

There are no affiliations available

Personalised recommendations