L-type Channel Regulation of Gene Expression

  • Natalia Gomez-Ospina
  • Ricardo Dolmetsch


Calcium-regulated transcription plays a key role in converting electrical activity at the membrane into long-lasting structural and biochemical changes in excitable cells. Although several calcium influx pathways contribute to the intracellular calcium rise that follows membrane depolarization in neurons, calcium influx through L-type calcium channels (LTCs) and NMDA receptors is particularly effective at activating gene expression. In this chapter, we review some of the experiments implicating LTCs in the induction of gene expression in response to neuronal activity and discuss some of the mechanisms that explain the dependence of activity-induced transcription on LTCs. We will focus our discussion on studies that explore the features of LTCs that allow them to activate the transcription factor CREB, and we will discuss recent studies from our group that identify the C-terminus of the LTC as a protein that regulates transcription directly in the nucleus.


CREB Binding Protein Activate Gene Expression CREB Phosphorylation Serum Response Element Transcription Factor CREB 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, M.W. and Rogers, T.J. (2005) Are chemokines the third major system in the brain? J. Leukoc. Biol. 78, 1204–1209.PubMedCrossRefGoogle Scholar
  2. Ahlijanian, M.K., Westenbroek, R.E. and Catterall, W.A. (1990) Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina. Neuron 4, 819–832.PubMedCrossRefGoogle Scholar
  3. Arthur, J.S., Fong, A.L., Dwyer, J.M., Davare, M., Reese, E., Obrietan, K. and Impey, S. (2004) Mitogen- and stress-activated protein kinase 1 mediates cAMP response element-binding protein phosphorylation and activation by neurotrophins. J. Neurosci. 24, 4324–4332.PubMedCrossRefGoogle Scholar
  4. Bading, H., Ginty, D.D. and Greenberg, M.E. (1993) Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260, 181–186.PubMedCrossRefGoogle Scholar
  5. Barallobre, M.J., Pascual, M., Del Rio, J.A. and Soriano, E. (2005) The netrin family of guidance factors: Emphasis on netrin-1 signalling. Brain Res. Behav. Brain Res. 49, 22–47.Google Scholar
  6. Bito, H., Deisseroth, K. and Tsien, R.W. (1996) CREB phosphorylation and dephosphorylation: A Ca2(+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214.PubMedCrossRefGoogle Scholar
  7. Catterall, W.A., Goldin, A.L. and Waxman, S.G. (2005) International union of pharmacology. XlVIII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev. 57, 397–409.PubMedCrossRefGoogle Scholar
  8. Conkright, M.D., Canettieri, G., Screaton, R., Guzman, E., Miraglia, L., Hogenesch, J.B. and Montminy, M. (2003) TORCS: Transducers of regulated CREB activity. Mol. Cell. 12, 413–423.PubMedCrossRefGoogle Scholar
  9. Davies, T.C., Barr, K.J., Jones, D.H., Zhu, D. and Kidder, G.M. (1996) Multiple members of the connexin gene family participate in preimplantation development of the mouse. Dev. Genet. 18, 234–243.PubMedCrossRefGoogle Scholar
  10. De Jongh, K.S., Colvin, A.A., Wang, K.K. and Catterall, W.A. (1994) Differential proteolysis of the full-length form of the L-type calcium channel alpha 1 subunit by calpain. J. Neurochem. 63, 1558–1564.PubMedCrossRefGoogle Scholar
  11. Deisseroth, K., Bito, H. and Tsien, R.W. (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16, 89–101.PubMedCrossRefGoogle Scholar
  12. Deisseroth, K., Heist, E.K. and Tsien, R.W. (1998) Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198–202.PubMedCrossRefGoogle Scholar
  13. Dolmetsch, R.E., Pajvani, U., Fife, K., Spotts, J.M. and Greenberg, M.E. (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294, 318–319.CrossRefGoogle Scholar
  14. Ebinu, J.O., Bottorff, D.A., Chan, E.Y., Stang, S.L., Dunn, R.J. and Stone, J.C. (1998) RasGRP, a Ras guanyl nucleotide- releasing protein with calcium- and diacylglycerol- binding motifs. Science 280, 1082–1086.PubMedCrossRefGoogle Scholar
  15. Farnsworth, C.L., Freshney, N.W., Rosen, L.B., Ghosh, A. and Greenberg, M.E. (1995) Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 376, 524–527.PubMedCrossRefGoogle Scholar
  16. Galli, C., Meucci, O., Scorziello, A., Werge, T.M., Calissano, P. and Schettini, G. (1995) Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: The involvement of intracellular calcium and RNA synthesis. J. Neurosci. 15, 1172–1179.PubMedGoogle Scholar
  17. Gerhardstein, B.L., Gao, T., Bunemann, M., Puri, T.S., Adair, A., Ma, H. and Hosey, M.M. (2000) Proteolytic processing of the C terminus of the alpha(1c) subunit of L-type calcium channels and the role of a proline-rich domain in membrane tethering of proteolytic fragments. J. Biol. Chem. 275, 8556–8563.PubMedCrossRefGoogle Scholar
  18. Gomez-Ospina, N., Tsuruta, F., Barreto-Chang, O., Hu, L. and Dolmetsch, R.E. (2006) The c terminus of the L-type voltage-gated calcium channel Ca(v)1.2 encodes a transcription factor. Cell 127, 591–606.PubMedCrossRefGoogle Scholar
  19. Gonzalez, G.A. and Montminy, M.R. (1989) Cyclic-amp stimulates somatostatin gene- transcription by phosphorylation of CREB at serine-133. Cell 59, 675–680.PubMedCrossRefGoogle Scholar
  20. Guldenagel, M., Sohl, G., Plum, A., Traub, O., Teubner, B., Weiler, R. and Willecke, K. (2000) Expression patterns of connexin genes in mouse retina. J. Comp. Neurol. 425, 193–201.PubMedCrossRefGoogle Scholar
  21. Hardingham, G.E., Arnold, F.J.L. and Bading, H. (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat. Neurosci. 4, 261–267.PubMedCrossRefGoogle Scholar
  22. Hell, J.W., Westenbroek, R.E., Breeze, L.J., Wang, K.K., Chavkin, C. and Catterall, W.A. (1996) N-methyl-D-aspartate receptor-induced proteolytic conversion of postsynaptic class c L-type calcium channels in hippocampal neurons. Proc. Natl. Acad. Sci. USA 93, 3362–3367.PubMedCrossRefGoogle Scholar
  23. Hell, J.W., Westenbroek, R.E., Warner, C., Ahlijanian, M.K., Prystay, W., Gilbert, M.M., Snutch, T.P. and Catterall, W.A. (1993) Identification and differential subcellular localization of the neuronal class c and class d L-type calcium channel alpha 1 subunits. J. Cell Biol. 123, 949–962.PubMedCrossRefGoogle Scholar
  24. Ho, N., Liauw, J.A., Blaeser, F., Wei, F., Hanissian, S., Muglia, L.M., Wozniak, D.F., Nardi, A., Arvin, K.L., Holtzman, D.M., et al. (2000) Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/GR-deficient mice. J. Neurosci. 20, 6459–6472.PubMedGoogle Scholar
  25. Impey, S., Fong, A.L., Wang, Y., Cardinaux, J.-R., Fass, D.M., Obrietan, K., Wayman, G., Storm, D.R., Soderling, T.R. and Goodman, R.H. (2002) Phosphorylation of CBP mediates transcriptional activation by neural activity and CaM kinase IV. Neuron 34, 235–244.PubMedCrossRefGoogle Scholar
  26. Kornhauser, J.M., Cowan, C.W., Shaywitz, A.J., Dolmetsch, R.E., Griffith, E.C., Hu, L.S., Haddad, C., Xia, Z.G. and Greenberg, M.E. (2002) CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34, 221–233.PubMedCrossRefGoogle Scholar
  27. Lev, S., Moreno, H., Martinez, R., Canoll, P., Peles, E., Musacchio, J.M., Plowman, G.D., Rudy, B. and Schlessinger, J. (1995) Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature 376, 737–745.PubMedCrossRefGoogle Scholar
  28. Liu, F., Iqbal, K., Grundke-Iqbal, I., Rossie, S. and Gong, C.X. (2005) Dephosphorylation of tau by protein phosphatase 5: Impairment in Alzheimer’s disease. J. Biol. Chem. 280, 1790–1796.PubMedCrossRefGoogle Scholar
  29. Liu, F.C. and Graybiel, A.M. (1996) Spatiotemporal dynamics of CREB phosphorylation: Transient versus sustained phosphorylation in the developing striatum. Neuron 17, 1133–1144.PubMedCrossRefGoogle Scholar
  30. Liu, Z., Ren, J. and Murphy, T.H. (2003) Decoding of synaptic voltage waveforms by specific classes of recombinant high-threshold Ca(2+) channels. J. Physiol. 553, 473–488.PubMedCrossRefGoogle Scholar
  31. Lockyer, P.J., Kupzig, S. and Cullen, P.J. (2001) CAPRI regulates Ca(2+)-dependent inactivation of the Ras-MAPK pathway. Curr. Biol. 11, 981–986.PubMedCrossRefGoogle Scholar
  32. Lonze, B.E. and Ginty, D.D. (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623.PubMedCrossRefGoogle Scholar
  33. Miranti, C.K., Ginty, D.D., Huang, G., Chatila, T. and Greenberg, M.E. (1995) Calcium activates serum response factor-dependent transcription by a Ras- and Elk-1- independent mechanism that involves a Ca2+/calmodulin-dependent kinase. Mol. Cell. Biol. 15, 3672–3684.PubMedGoogle Scholar
  34. Moosmang, S., Haider, N., Klugbauer, N., Adelsberger, H., Langwieser, N., Muller, J., Stiess, M., Marais, E., Schulla, V., Lacinova, L., et al. (2005) Role of hippocampal CaV1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J. Neurosci. 25, 9883–9892.PubMedCrossRefGoogle Scholar
  35. Morgan, J.I. and Curran, T. (1986) Role of ion flux in the control of c-fos expression. Nature 322, 552–555.PubMedCrossRefGoogle Scholar
  36. Mori, M.X., Erickson, M.G. and Yue, D.T. (2004) Functional stoichiometry and local enrich ment of calmodulin interacting with Ca2+ channels. Science 304, 432–435.PubMedCrossRefGoogle Scholar
  37. Murphy, T.H., Worley, P.F. and Baraban, J.M. (1991) L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 7, 625–635.PubMedCrossRefGoogle Scholar
  38. Murray-Zmijewski, F., Lane, D.P. and Bourdon, J.C. (2006) P53/p63/p73 isoforms: An orchestra of isoforms to harmonize cell differentiation and response to stress. Cell Death Differ. 13, 962–972.PubMedCrossRefGoogle Scholar
  39. Nakazawa, H. and Murphy, T.H. (1999) Activation of nuclear calcium dynamics by synaptic stimulation in cultured cortical neurons. J. Neurochem. 73, 1075–1083.PubMedCrossRefGoogle Scholar
  40. Redman, L., Kashani, A.H. and Ghosh, A. (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34, 999–1010.CrossRefGoogle Scholar
  41. Riccio, A. (2006) A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol. Cell. 21, 283–294.PubMedCrossRefGoogle Scholar
  42. Sheng, M., Dougan, S.T., McFadden, G. and Greenberg, M.E. (1988) Calcium and growth- factor pathways of c-fos transcriptional activation require distinct upstream regulatory sequences. Mol. Cell. Biol. 8, 2787–2796.PubMedGoogle Scholar
  43. Sheng, M., McFadden, G. and Greenberg, M.E. (1990) Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4, 571–582.PubMedCrossRefGoogle Scholar
  44. Tsien, R.W. and Tsien, R.Y. (1990) Calcium channels, stores, and oscillations. Annu. Rev. Cell Biol. 6, 715–760.PubMedCrossRefGoogle Scholar
  45. Venance, L., Glowinski, J. and Giaume, C. (2004) Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices. J. Physiol. 559, 215–230.PubMedCrossRefGoogle Scholar
  46. Villalonga, P., Lopez-Alcala, C., Chiloeches, A., Gil, J., Marais, R., Bachs, O. and Agell, N. (2002) Calmodulin prevents activation of Ras by PKC in 3T3 fibroblasts. J. Biol. Chem. 277, 37929–37935.PubMedCrossRefGoogle Scholar
  47. Wayman, G.A., Impey, S., Marks, D., Saneyoshi, T., Grant, W.F., Derkach, V. and Soderling, T.R. (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50, 897–909.PubMedCrossRefGoogle Scholar
  48. Weick, J.P., Groth, R.D., Isaksen, A.L. and Mermelstein, P.G. (2003) Interactions with PDZ proteins are required for L-type calcium channels to activate cAMP response element- binding protein-dependent gene expression. J. Neurosci. 23, 3446–3456.PubMedGoogle Scholar
  49. Westenbroek, R.E., Ahlijanian, M.K. and Catterall, W.A. (1990) Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347, 281–284.PubMedCrossRefGoogle Scholar
  50. Wiggin, G.R., Soloaga, A., Foster, J.M., Murray-Tait, V., Cohen, P. and Arthur, J.S. (2002) MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol. Cell. Biol. 22, 2871–2881.PubMedCrossRefGoogle Scholar
  51. Wu, G.Y., Deisseroth, K. and Tsien, R.W. (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 98, 2808–2813.PubMedCrossRefGoogle Scholar
  52. Wu, X., Yoo, Y., Okuhama, N.N., Tucker, P.W., Liu, G. and Guan, J.L. (2006) Regulation of RNA-polymerase-II-dependent transcription by N-WASP and its nuclear-binding partners. Nat. Cell Biol. 8, 756–763.PubMedCrossRefGoogle Scholar
  53. Zhang, H., Fu, Y., Altier, C., Platzer, J., Surmeier, D.J. and Bezprozvanny, I. (2006) Ca1.2 and CaV1.3 neuronal L-type calcium channels: Differential targeting and signaling to pCREB. Eur. J. Neurosci. 23, 2297–2310.PubMedCrossRefGoogle Scholar
  54. Zhang, H., Maximov, A., Fu, Y., Xu, F., Tang, T.S., Tkatch, T., Surmeier, D.J. and Bezprozvanny, I. (2005) Association of CaV1.3 L-type calcium channels with shank. J. Neurosci. 25, 1037–1049.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Natalia Gomez-Ospina
  • Ricardo Dolmetsch

There are no affiliations available

Personalised recommendations