Role of Action Potentials in Regulating Gene Transcription: Relevance to LTP

  • J. Paige Adams
  • Rachel A. Robinson
  • Serena M. Dudek


The late phase of Long Term Potentiation (LTP) appears to require transcription, but how the nucleus is informed remains unknown. We propose that calcium elevation from multiple action potentials serves as the signal rather than an NMDA receptor-dependent signal transported from synapses. We find that NMDA receptor antagonists interfere with action potential generation and thus do not resolve the issue. Pharmacologic restoration of action potentials in the presence of NMDA receptor antagonists shows that ERK activation, transcription factor binding, and arc gene expression, previously all shown or thought to be NMDA receptor dependent, are maintained. These data demonstrate that types of signaling in the nucleus, previously attributed to NMDA-receptor dependent synapse-to-nucleus signals, can be initiated by action potentials. Action potential-mediated calcium increases can provide a fast and effective signal in the nucleus that may be an important factor in LTP consolidation.


NMDA Receptor Long Term Potentiation Action Potential Generation Regulate Gene Transcription NMDAR Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, T., Nguyen, P.V., Barad, M., Deuel, T.A., Kandel, E.R. and Bourtchuladze, R. (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626.PubMedCrossRefGoogle Scholar
  2. Abraham, W.C. and Mason, S.E. (1988) Effects of the NMDA receptor/channel antagonists CPP and MK801 on hippocampal field potentials and long-term potentiation in anesthetized rats. Brain. Res. 462, 40–46.PubMedCrossRefGoogle Scholar
  3. Adams, J.P., Anderson, A.E., Varga, A.W., Dineley, K.T., Cook, R.G., Pfaffinger, P.J. and Sweatt, J.D. (2000) The A-type potassium channel Kv4.2 is a substrate for the mitogen-activated protein kinase ERK. J. Neurochem. 75, 2277–2287.PubMedCrossRefGoogle Scholar
  4. Adams, J.P. and Dudek, S.M. (2005) Late-phase long-term potentiation: Getting to the nucleus. Nat. Rev. Neurosci. 6, 737–743.PubMedCrossRefGoogle Scholar
  5. Adams, J.P. and Sweatt, J.D. (2002) Molecular psychology: Roles for the ERK MAP kinase cascade in memory. Ann. Rev. Pharm. and Tox. 42, 135–163.CrossRefGoogle Scholar
  6. Alarcon, J.M., Barco, A. and Kandel, E.R. (2006) Capture of the late phase of long-term potentiation within and across the apical and basilar dendritic compartments of CA1 pyramidal neurons: Synaptic tagging is compartment restricted. J. Neuro sci. 26, 256–264.Google Scholar
  7. Andersen, P., Sundberg, S.H., Sveen, O. and Wigstrom, H. (1977) Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature 266, 736–737.PubMedCrossRefGoogle Scholar
  8. Bading, H. and Greenberg, M.E. (1991) Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253, 912–914.PubMedCrossRefGoogle Scholar
  9. Baron, C., Benes, C., Tan, H.V., Fagard, R. and Roisin, M.-P. (1996) Potassium chloride pulse enhances mitogen-activated protein kinase activity in rat hippocampal slices. J. Neurochem. 66, 1005–1010.PubMedCrossRefGoogle Scholar
  10. Bekinschtein, P., Cammarota, M., Igaz, L.M., Bevilaqua, L.R., Izquierdo, I. and Medina, J.H. (2007) Persistence of long-term memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron 53, 261–277.PubMedCrossRefGoogle Scholar
  11. Carlotti, F., Chapman, R., Dower, S.K. and Qwarnstrom, E.E. (1999) Activation of nuclear factor kappaB in single living cells. Dependence of nuclear translocation and anti-apoptotic function on EGFPRELA concentration. J. Biol. Chem. 274, 37941–37949.PubMedCrossRefGoogle Scholar
  12. Cole, A.J., Saffen, D.W., Baraban, J.M. and Worley, P.F. (1989) Rapid increase of an immediate early gene messenger rna in hippocampal neurons by synaptic NMDA receptor activation. Nature 340, 474–476.PubMedCrossRefGoogle Scholar
  13. Davis, H.P. and Squire, L.R. (1984) Protein synthesis and memory: A review. Psy chol. Bull. 96, 518–559.CrossRefGoogle Scholar
  14. Deisseroth, K., Heist, E.K. and Tsien, R.W. (1998) Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198–202.PubMedCrossRefGoogle Scholar
  15. Dolmetsch, R.E., Pajvani, U., Fife, K., Spotts, J.M. and Greenberg, M.E. (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294, 318–319.CrossRefGoogle Scholar
  16. Dudek, S.M. and Fields, R.D. (2001) Mitogen-activated protein kinase/extracellular signal-regulated kinase activation in somatodendritic compartments: Roles of action potentials, frequency, and mode of calcium entry. J. Neurosci. 21, RC122.PubMedGoogle Scholar
  17. Dudek, S.M. and Fields, R.D. (2002) Somatic action potentials are sufficient for late-phase LTP-related cell signaling. Proc. Natl. Acad. Sci. USA 99, 3962–3967.PubMedCrossRefGoogle Scholar
  18. Engert, F. and Bonhoeffer, T. (1997) Synapse specificity of long-term potentiation breaks down at short distances. Nature 388, 279–284.PubMedCrossRefGoogle Scholar
  19. English, J.D. and Sweatt, J.D. (1996) Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem. 271, 24329–24332.PubMedCrossRefGoogle Scholar
  20. English, J.D. and Sweatt, J.D. (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J. Biol. Chem. 272, 19103–19106.PubMedCrossRefGoogle Scholar
  21. Flavell, S.W., Cowan, C.W., Kim, T.K., Greer, P.L., Lin, Y., Paradis, S., Griffith, E.C., Hu, L.S., Chen, C. and Greenberg, M.E. (2006) Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008–1012.PubMedCrossRefGoogle Scholar
  22. Fonseca, R., Nagerl, U.V., Morris, R.G. and Bonhoeffer, T. (2004) Competing for memory: Hippocampal LTP under regimes of reduced protein synthesis. Neuron 44, 1011–1120.PubMedGoogle Scholar
  23. Frey, J.U. and Morris, R.G. (1997) Synaptic tagging and long-term potentiation. Nature 385, 533–536.PubMedCrossRefGoogle Scholar
  24. Frey, U., Frey, S., Schollmeier, F. and Krug, M. (1996) Influence of actinomycin D, a RNA synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in vitro. J. Physiol. 490, 703–711.PubMedGoogle Scholar
  25. Frey, U., Krug, M., Brodemann, R., Reymann, K. and Matthies, H. (1989) Long-term potentiation induced in dendrites separated from rat’s CA1 pyramidal somata does not establish a late phase. Neurosci. Lett. 97, 135–139.PubMedCrossRefGoogle Scholar
  26. Guzowski, J.F., Lyford, G.L., Stevenson, G.D., Houston, F.P., McGaugh, J.L., Worley, P.F. and Barnes, C.A. (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001.PubMedGoogle Scholar
  27. Guzowski, J.F., McNaughton, B.L., Barnes, C.A. and Worley, P.F. (1999) Environment-specific expression of the immediate-early gene arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124.PubMedCrossRefGoogle Scholar
  28. Hardingham, G.E., Arnold, F.J.L. and Bading, H. (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat. Neurosci. 4, 261–267.PubMedCrossRefGoogle Scholar
  29. Huff, N.C., Frank, M., Wright-Hardesty, K., Sprunger, D., Matus-Amat, P., Higgins, E. and Rudy, J.W. (2006) Amygdala regulation of immediate-early gene expression in the hippocampus induced by contextual fear conditioning. J. Neurosci. 26, 1616–1623.PubMedCrossRefGoogle Scholar
  30. Impey, S., Mark, M., Villacres, E.C., Poser, S., Chavkin, C. and Storm, D.R. (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973–982.PubMedCrossRefGoogle Scholar
  31. Jones, M.W., Errington, M.L., French, P.J., Fine, A., Bliss, T.V., Garel, S., Charnay, P., Bozon, B., Laroche, S. and Davis, S. (2001) A requirement for the immediate early gene zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4, 289–296.PubMedCrossRefGoogle Scholar
  32. Kang, H., Sun, L.D., Atkins, C.M., Soderling, T.R., Wilson, M.A. and Tonegawa, S. (2001) An important role of neural activity-dependent camkIV signaling in the consolidation of long-term memory. Cell 106, 771–783.PubMedCrossRefGoogle Scholar
  33. Kelleher, R.J., Govindarajan, A., Jung, H.Y., Kang, H. and Tonegawa, S. (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116, 467–479.PubMedCrossRefGoogle Scholar
  34. Kohrmann, M., Luo, M., Kaether, C., DesGroseillers, L., Dotti, C.G. and Kiebler, M.A. (1999) Microtubule-dependent recruitment of staufen-green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol. Biol. Cell 10, 2945–2953.PubMedGoogle Scholar
  35. Larson, J., Wong, D. and Lynch, G. (1986) Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res. 368, 347–350.PubMedCrossRefGoogle Scholar
  36. Link, W., Konietzko, U., Kauselmann, G., Krug, M., Schwanke, B., Frey, U. and Kuhl, D. (1995) Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc. Natl. Acad. Sci. USA 92, 5734–5738.PubMedCrossRefGoogle Scholar
  37. Liu, J., Fukunaga, K., Yamamoto, H., Nishi, K. and Miyamoto, E. (1999) Differential roles of Ca(2+)/calmodulin-dependent protein kinase II and mitogen-activated protein kinase activation in hippocampal long-term potentiation. J. Neurosci. 19, 8292–8299.PubMedGoogle Scholar
  38. Matsuo, R., Murayama, A., Saitoh, Y., Sakaki, Y. and Inokuchi, K. (2000) Identification and cataloging of genes induced by long-lasting long-term potentiation in awake rats. J. Neurochem. 74, 2239.PubMedCrossRefGoogle Scholar
  39. Meffert, M., Chang, J.M., Wiltgen, B.J., Fanselow, M.S. and Baltimore, D. (2003) NF-αB functions in synaptic signaling and behavior. Nat. Neurosci. 6, 1072–1078.PubMedCrossRefGoogle Scholar
  40. Mermelstein, P.G., Bito, H., Deisseroth, K. and Tsien, R.W. (2000) Critical dependence of camp response element-binding protein phosphorylation on L-type calcium channels supports a selective response to EPSPs in preference to action potentials. J. Neurosci. 20, 266–273.PubMedGoogle Scholar
  41. Miller, K.D., Chapman, B. and Stryker, M.P. (1989) Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 86, 5183–5187.PubMedCrossRefGoogle Scholar
  42. Milner, B., Squire, L.R. and Kandel, E.R. (1998) Cognitive neuroscience and the study of memory. Neuron 20, 445–468.PubMedCrossRefGoogle Scholar
  43. Montarolo, P.G., Goelet, P., Castellucci, V.F., Morgan, J., Kandel, E.R. and Schacher, S. (1986) A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in aplysia. Science 234, 1249–1254.PubMedCrossRefGoogle Scholar
  44. Nguyen, P.V., Abel, T. and Kandel, E.R. (1994) Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265, 1104–1107.PubMedCrossRefGoogle Scholar
  45. Otani, S., Marshall, C.J, Tate, W.P, Goddard, G.V, Abraham, W.C (1989) Maintenance of long-term potentiation in rat dentate gyrus requires protein synthesis but not messenger RNA synthesis immediately post-tetanization. Neuroscience 28, 519–526.PubMedCrossRefGoogle Scholar
  46. Phair, R.D., Scaffidi, P., Elbi, C., Vecerova, J., Dey, A., Ozato, K., Brown, D.T., Hager, G., Bustin, M. and Misteli, T. (2004) Global nature of dynamic protein-chromatin interactions in vivo: Three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell. Biol. 24, 6393–6402.PubMedCrossRefGoogle Scholar
  47. Plath, N., Ohana, O., Dammermann, B., Errington, M.L., Schmitz, D., Gross, C., Mao, X., Engelsberg, A., Mahlke, C., Welzl, H., et al., (2006) Arc/arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–444.PubMedCrossRefGoogle Scholar
  48. Quinlan, E.M. and Halpain, S. (1996) Emergence of activity-dependent, bidirectional control of microtubule-associated protein MAP2 phosphorylation during postnatal development. J. Neurosci. 16, 7627–7637.PubMedGoogle Scholar
  49. Rial Verde, E.M., Lee-Osbourne, J., Worley, P.F., Malinow, R. and Cline, H.T. (2006) Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52, 461–474.PubMedCrossRefGoogle Scholar
  50. Rodriguez, J.J., Davies, H.A., Silva, A.T., De Sousa, I.E., Peddie, C.J., Colyer, F.M., Lancashire, C.L., Fine, A., Errington, M.L., Bliss, T.V. and Stewart, M.G. (2005) Long-term potentiation in the rat dentate gyrus is associated with enhanced arc/arg3.1 protein expression in spines, dendrites and glia. Eur. J. Neurosci. 21, 2384–2396.PubMedCrossRefGoogle Scholar
  51. Rosen, L.B., Ginty, D.D., Weber, M.J. and Greenberg, M.E. (1994) Membrane depo larization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12, 1207–1221.PubMedCrossRefGoogle Scholar
  52. Sajikumar, S. and Frey, J.U. (2004) Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol. Learn. Mem. 82, 12–25.PubMedCrossRefGoogle Scholar
  53. Sakagami, H., Kamata, A., Nishimura, H., Kasahara, J., Owada, Y., Takeuchi, Y., Watanabe, M., Fukunaga, K. and Kondo, H. (2005) Prominent expression and activity-dependent nuclear translocation of Ca2+/calmodulin-dependent protein kinase Idelta in hippocampal neurons. Eur. J. Neurosci. 22, 2697–2707.PubMedCrossRefGoogle Scholar
  54. Shapiro, M.L. and Eichenbaum, H. (1999) Hippocampus as a memory map: Synaptic plasticity and memory encoding by hippocampal neurons. Hippocampus 9, 365–384.PubMedCrossRefGoogle Scholar
  55. Shepherd, J.D., Rumbaugh, G., Wu, J., Chowdhury, S., Plath, N., Kuhl, D., Huganir, R.L. and Worley, P.F. (2006) Arc/arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484.PubMedCrossRefGoogle Scholar
  56. Steward, O., Wallace, C.S., Lyford, G.L. and Worley, P.F. (1998) Synaptic activation causes the mRNA for the IEG arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21, 741–751.PubMedCrossRefGoogle Scholar
  57. Steward, O. and Worley, P.F. (2001) Selective targeting of newly synthesized arc mRNA to active synapses requires NMDA receptor activation. Neuron 30, 227–240.PubMedCrossRefGoogle Scholar
  58. Sutton, M.A. and Schuman, E.M. (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49–58.PubMedCrossRefGoogle Scholar
  59. Thiels, E., Kanterewicz, B.I., Norman, E.D., Trzaskos, J.M. and Klann, E. (2002) Long-term depression in the adult hippocampus in vivo involves activation of extracellular signal-regulated kinase and phosphorylation of Elk-1. J. Neurosci. 22, 2054–2062.PubMedGoogle Scholar
  60. Thomas, G.M. and Huganir, R.L. (2004) MAPK cascade signalling and synaptic plasticity. Nat. Rev. Neurosci. 5, 173–183.PubMedCrossRefGoogle Scholar
  61. Tsokas, P., Grace, E.A., Chan, P., Ma, T., Sealfon, S.C., Iyengar, R., Landau, E.M. and Blitzer, R.D. (2005) Local protein synthesis mediates a rapid increase in dendritic elongation factor 1a after induction of late long term potentiation. J. Neurosci. 25, 5833–5843.PubMedCrossRefGoogle Scholar
  62. Vazdarjanova, A., McNaughton, B.L., Barnes, C.A., Worley, P.F. and Guzowski, J.F. (2002) Experience-dependent coincident expression of the effector immediate-early genes arc and Homer 1a in hippocampal and neocortical neuronal networks. J. Neurosci. 22, 10067–10071.PubMedGoogle Scholar
  63. Vickers, C.A., Dickson, K.S. and Wyllie, D.J.A. (2005) Induction and maintenance of late-phase long-term potentiation in isolated dendrites of rat hippocampal CA1 pyramidal neurones. J. Physiol. 568, 803–813.PubMedCrossRefGoogle Scholar
  64. Waltereit, R., Dammermann, B., Wulff, P., Scafidi, J., Staubli, U., Kauselmann, G., Bundman, M. and Kuhl, D. (2001) Arg3.1/arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J. Neurosci. 21, 5484–5493.PubMedGoogle Scholar
  65. Worley, P.F., Bhat, R.V., Baraban, J.M., Erickson, C.A., McNaughton, B.L. and Barnes, C.A. (1993) Thresholds for synaptic activation of transcription factors in hippocampus: Correlation with long-term enhancement. J. Neurosci. 13, 4776–4786.PubMedGoogle Scholar
  66. Yuan, J.P., Kiselyov, K., Shin, D.M., Chen, J., Shcheynikov, N., Kang, S.H., Dehoff, M.H., Schwarz, M.K., Seeburg, P.H., Muallem, S. and Worley, P.F. (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114, 777–789.PubMedCrossRefGoogle Scholar
  67. Zhao, M., Adams, J.P. and Dudek, S.M. (2005) Pattern-dependent role of NMDA receptors in action potential generation: Consequences on extracellular signal-regulated kinase activation. J. Neurosci. 25, 7032–7039.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. Paige Adams
  • Rachel A. Robinson
  • Serena M. Dudek

There are no affiliations available

Personalised recommendations