Skip to main content

Role of Action Potentials in Regulating Gene Transcription: Relevance to LTP

  • Chapter
Transcriptional Regulation by Neuronal Activity

Abstract

The late phase of Long Term Potentiation (LTP) appears to require transcription, but how the nucleus is informed remains unknown. We propose that calcium elevation from multiple action potentials serves as the signal rather than an NMDA receptor-dependent signal transported from synapses. We find that NMDA receptor antagonists interfere with action potential generation and thus do not resolve the issue. Pharmacologic restoration of action potentials in the presence of NMDA receptor antagonists shows that ERK activation, transcription factor binding, and arc gene expression, previously all shown or thought to be NMDA receptor dependent, are maintained. These data demonstrate that types of signaling in the nucleus, previously attributed to NMDA-receptor dependent synapse-to-nucleus signals, can be initiated by action potentials. Action potential-mediated calcium increases can provide a fast and effective signal in the nucleus that may be an important factor in LTP consolidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel, T., Nguyen, P.V., Barad, M., Deuel, T.A., Kandel, E.R. and Bourtchuladze, R. (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626.

    Article  PubMed  CAS  Google Scholar 

  • Abraham, W.C. and Mason, S.E. (1988) Effects of the NMDA receptor/channel antagonists CPP and MK801 on hippocampal field potentials and long-term potentiation in anesthetized rats. Brain. Res. 462, 40–46.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J.P., Anderson, A.E., Varga, A.W., Dineley, K.T., Cook, R.G., Pfaffinger, P.J. and Sweatt, J.D. (2000) The A-type potassium channel Kv4.2 is a substrate for the mitogen-activated protein kinase ERK. J. Neurochem. 75, 2277–2287.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J.P. and Dudek, S.M. (2005) Late-phase long-term potentiation: Getting to the nucleus. Nat. Rev. Neurosci. 6, 737–743.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J.P. and Sweatt, J.D. (2002) Molecular psychology: Roles for the ERK MAP kinase cascade in memory. Ann. Rev. Pharm. and Tox. 42, 135–163.

    Article  CAS  Google Scholar 

  • Alarcon, J.M., Barco, A. and Kandel, E.R. (2006) Capture of the late phase of long-term potentiation within and across the apical and basilar dendritic compartments of CA1 pyramidal neurons: Synaptic tagging is compartment restricted. J. Neuro sci. 26, 256–264.

    CAS  Google Scholar 

  • Andersen, P., Sundberg, S.H., Sveen, O. and Wigstrom, H. (1977) Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature 266, 736–737.

    Article  PubMed  CAS  Google Scholar 

  • Bading, H. and Greenberg, M.E. (1991) Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253, 912–914.

    Article  PubMed  CAS  Google Scholar 

  • Baron, C., Benes, C., Tan, H.V., Fagard, R. and Roisin, M.-P. (1996) Potassium chloride pulse enhances mitogen-activated protein kinase activity in rat hippocampal slices. J. Neurochem. 66, 1005–1010.

    Article  PubMed  CAS  Google Scholar 

  • Bekinschtein, P., Cammarota, M., Igaz, L.M., Bevilaqua, L.R., Izquierdo, I. and Medina, J.H. (2007) Persistence of long-term memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron 53, 261–277.

    Article  PubMed  CAS  Google Scholar 

  • Carlotti, F., Chapman, R., Dower, S.K. and Qwarnstrom, E.E. (1999) Activation of nuclear factor kappaB in single living cells. Dependence of nuclear translocation and anti-apoptotic function on EGFPRELA concentration. J. Biol. Chem. 274, 37941–37949.

    Article  PubMed  CAS  Google Scholar 

  • Cole, A.J., Saffen, D.W., Baraban, J.M. and Worley, P.F. (1989) Rapid increase of an immediate early gene messenger rna in hippocampal neurons by synaptic NMDA receptor activation. Nature 340, 474–476.

    Article  PubMed  CAS  Google Scholar 

  • Davis, H.P. and Squire, L.R. (1984) Protein synthesis and memory: A review. Psy chol. Bull. 96, 518–559.

    Article  CAS  Google Scholar 

  • Deisseroth, K., Heist, E.K. and Tsien, R.W. (1998) Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198–202.

    Article  PubMed  CAS  Google Scholar 

  • Dolmetsch, R.E., Pajvani, U., Fife, K., Spotts, J.M. and Greenberg, M.E. (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294, 318–319.

    Article  Google Scholar 

  • Dudek, S.M. and Fields, R.D. (2001) Mitogen-activated protein kinase/extracellular signal-regulated kinase activation in somatodendritic compartments: Roles of action potentials, frequency, and mode of calcium entry. J. Neurosci. 21, RC122.

    PubMed  CAS  Google Scholar 

  • Dudek, S.M. and Fields, R.D. (2002) Somatic action potentials are sufficient for late-phase LTP-related cell signaling. Proc. Natl. Acad. Sci. USA 99, 3962–3967.

    Article  PubMed  CAS  Google Scholar 

  • Engert, F. and Bonhoeffer, T. (1997) Synapse specificity of long-term potentiation breaks down at short distances. Nature 388, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • English, J.D. and Sweatt, J.D. (1996) Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem. 271, 24329–24332.

    Article  PubMed  CAS  Google Scholar 

  • English, J.D. and Sweatt, J.D. (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J. Biol. Chem. 272, 19103–19106.

    Article  PubMed  CAS  Google Scholar 

  • Flavell, S.W., Cowan, C.W., Kim, T.K., Greer, P.L., Lin, Y., Paradis, S., Griffith, E.C., Hu, L.S., Chen, C. and Greenberg, M.E. (2006) Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008–1012.

    Article  PubMed  CAS  Google Scholar 

  • Fonseca, R., Nagerl, U.V., Morris, R.G. and Bonhoeffer, T. (2004) Competing for memory: Hippocampal LTP under regimes of reduced protein synthesis. Neuron 44, 1011–1120.

    PubMed  CAS  Google Scholar 

  • Frey, J.U. and Morris, R.G. (1997) Synaptic tagging and long-term potentiation. Nature 385, 533–536.

    Article  PubMed  CAS  Google Scholar 

  • Frey, U., Frey, S., Schollmeier, F. and Krug, M. (1996) Influence of actinomycin D, a RNA synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in vitro. J. Physiol. 490, 703–711.

    PubMed  CAS  Google Scholar 

  • Frey, U., Krug, M., Brodemann, R., Reymann, K. and Matthies, H. (1989) Long-term potentiation induced in dendrites separated from rat’s CA1 pyramidal somata does not establish a late phase. Neurosci. Lett. 97, 135–139.

    Article  PubMed  CAS  Google Scholar 

  • Guzowski, J.F., Lyford, G.L., Stevenson, G.D., Houston, F.P., McGaugh, J.L., Worley, P.F. and Barnes, C.A. (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001.

    PubMed  CAS  Google Scholar 

  • Guzowski, J.F., McNaughton, B.L., Barnes, C.A. and Worley, P.F. (1999) Environment-specific expression of the immediate-early gene arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124.

    Article  PubMed  CAS  Google Scholar 

  • Hardingham, G.E., Arnold, F.J.L. and Bading, H. (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat. Neurosci. 4, 261–267.

    Article  PubMed  CAS  Google Scholar 

  • Huff, N.C., Frank, M., Wright-Hardesty, K., Sprunger, D., Matus-Amat, P., Higgins, E. and Rudy, J.W. (2006) Amygdala regulation of immediate-early gene expression in the hippocampus induced by contextual fear conditioning. J. Neurosci. 26, 1616–1623.

    Article  PubMed  CAS  Google Scholar 

  • Impey, S., Mark, M., Villacres, E.C., Poser, S., Chavkin, C. and Storm, D.R. (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973–982.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M.W., Errington, M.L., French, P.J., Fine, A., Bliss, T.V., Garel, S., Charnay, P., Bozon, B., Laroche, S. and Davis, S. (2001) A requirement for the immediate early gene zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4, 289–296.

    Article  PubMed  CAS  Google Scholar 

  • Kang, H., Sun, L.D., Atkins, C.M., Soderling, T.R., Wilson, M.A. and Tonegawa, S. (2001) An important role of neural activity-dependent camkIV signaling in the consolidation of long-term memory. Cell 106, 771–783.

    Article  PubMed  CAS  Google Scholar 

  • Kelleher, R.J., Govindarajan, A., Jung, H.Y., Kang, H. and Tonegawa, S. (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116, 467–479.

    Article  PubMed  CAS  Google Scholar 

  • Kohrmann, M., Luo, M., Kaether, C., DesGroseillers, L., Dotti, C.G. and Kiebler, M.A. (1999) Microtubule-dependent recruitment of staufen-green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol. Biol. Cell 10, 2945–2953.

    PubMed  CAS  Google Scholar 

  • Larson, J., Wong, D. and Lynch, G. (1986) Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res. 368, 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Link, W., Konietzko, U., Kauselmann, G., Krug, M., Schwanke, B., Frey, U. and Kuhl, D. (1995) Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc. Natl. Acad. Sci. USA 92, 5734–5738.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Fukunaga, K., Yamamoto, H., Nishi, K. and Miyamoto, E. (1999) Differential roles of Ca(2+)/calmodulin-dependent protein kinase II and mitogen-activated protein kinase activation in hippocampal long-term potentiation. J. Neurosci. 19, 8292–8299.

    PubMed  CAS  Google Scholar 

  • Matsuo, R., Murayama, A., Saitoh, Y., Sakaki, Y. and Inokuchi, K. (2000) Identification and cataloging of genes induced by long-lasting long-term potentiation in awake rats. J. Neurochem. 74, 2239.

    Article  PubMed  CAS  Google Scholar 

  • Meffert, M., Chang, J.M., Wiltgen, B.J., Fanselow, M.S. and Baltimore, D. (2003) NF-αB functions in synaptic signaling and behavior. Nat. Neurosci. 6, 1072–1078.

    Article  PubMed  CAS  Google Scholar 

  • Mermelstein, P.G., Bito, H., Deisseroth, K. and Tsien, R.W. (2000) Critical dependence of camp response element-binding protein phosphorylation on L-type calcium channels supports a selective response to EPSPs in preference to action potentials. J. Neurosci. 20, 266–273.

    PubMed  CAS  Google Scholar 

  • Miller, K.D., Chapman, B. and Stryker, M.P. (1989) Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 86, 5183–5187.

    Article  PubMed  CAS  Google Scholar 

  • Milner, B., Squire, L.R. and Kandel, E.R. (1998) Cognitive neuroscience and the study of memory. Neuron 20, 445–468.

    Article  PubMed  CAS  Google Scholar 

  • Montarolo, P.G., Goelet, P., Castellucci, V.F., Morgan, J., Kandel, E.R. and Schacher, S. (1986) A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in aplysia. Science 234, 1249–1254.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, P.V., Abel, T. and Kandel, E.R. (1994) Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265, 1104–1107.

    Article  PubMed  CAS  Google Scholar 

  • Otani, S., Marshall, C.J, Tate, W.P, Goddard, G.V, Abraham, W.C (1989) Maintenance of long-term potentiation in rat dentate gyrus requires protein synthesis but not messenger RNA synthesis immediately post-tetanization. Neuroscience 28, 519–526.

    Article  PubMed  CAS  Google Scholar 

  • Phair, R.D., Scaffidi, P., Elbi, C., Vecerova, J., Dey, A., Ozato, K., Brown, D.T., Hager, G., Bustin, M. and Misteli, T. (2004) Global nature of dynamic protein-chromatin interactions in vivo: Three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell. Biol. 24, 6393–6402.

    Article  PubMed  CAS  Google Scholar 

  • Plath, N., Ohana, O., Dammermann, B., Errington, M.L., Schmitz, D., Gross, C., Mao, X., Engelsberg, A., Mahlke, C., Welzl, H., et al., (2006) Arc/arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–444.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, E.M. and Halpain, S. (1996) Emergence of activity-dependent, bidirectional control of microtubule-associated protein MAP2 phosphorylation during postnatal development. J. Neurosci. 16, 7627–7637.

    PubMed  CAS  Google Scholar 

  • Rial Verde, E.M., Lee-Osbourne, J., Worley, P.F., Malinow, R. and Cline, H.T. (2006) Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52, 461–474.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, J.J., Davies, H.A., Silva, A.T., De Sousa, I.E., Peddie, C.J., Colyer, F.M., Lancashire, C.L., Fine, A., Errington, M.L., Bliss, T.V. and Stewart, M.G. (2005) Long-term potentiation in the rat dentate gyrus is associated with enhanced arc/arg3.1 protein expression in spines, dendrites and glia. Eur. J. Neurosci. 21, 2384–2396.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, L.B., Ginty, D.D., Weber, M.J. and Greenberg, M.E. (1994) Membrane depo larization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12, 1207–1221.

    Article  PubMed  CAS  Google Scholar 

  • Sajikumar, S. and Frey, J.U. (2004) Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol. Learn. Mem. 82, 12–25.

    Article  PubMed  CAS  Google Scholar 

  • Sakagami, H., Kamata, A., Nishimura, H., Kasahara, J., Owada, Y., Takeuchi, Y., Watanabe, M., Fukunaga, K. and Kondo, H. (2005) Prominent expression and activity-dependent nuclear translocation of Ca2+/calmodulin-dependent protein kinase Idelta in hippocampal neurons. Eur. J. Neurosci. 22, 2697–2707.

    Article  PubMed  Google Scholar 

  • Shapiro, M.L. and Eichenbaum, H. (1999) Hippocampus as a memory map: Synaptic plasticity and memory encoding by hippocampal neurons. Hippocampus 9, 365–384.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, J.D., Rumbaugh, G., Wu, J., Chowdhury, S., Plath, N., Kuhl, D., Huganir, R.L. and Worley, P.F. (2006) Arc/arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484.

    Article  PubMed  CAS  Google Scholar 

  • Steward, O., Wallace, C.S., Lyford, G.L. and Worley, P.F. (1998) Synaptic activation causes the mRNA for the IEG arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21, 741–751.

    Article  PubMed  CAS  Google Scholar 

  • Steward, O. and Worley, P.F. (2001) Selective targeting of newly synthesized arc mRNA to active synapses requires NMDA receptor activation. Neuron 30, 227–240.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, M.A. and Schuman, E.M. (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49–58.

    Article  PubMed  CAS  Google Scholar 

  • Thiels, E., Kanterewicz, B.I., Norman, E.D., Trzaskos, J.M. and Klann, E. (2002) Long-term depression in the adult hippocampus in vivo involves activation of extracellular signal-regulated kinase and phosphorylation of Elk-1. J. Neurosci. 22, 2054–2062.

    PubMed  CAS  Google Scholar 

  • Thomas, G.M. and Huganir, R.L. (2004) MAPK cascade signalling and synaptic plasticity. Nat. Rev. Neurosci. 5, 173–183.

    Article  PubMed  CAS  Google Scholar 

  • Tsokas, P., Grace, E.A., Chan, P., Ma, T., Sealfon, S.C., Iyengar, R., Landau, E.M. and Blitzer, R.D. (2005) Local protein synthesis mediates a rapid increase in dendritic elongation factor 1a after induction of late long term potentiation. J. Neurosci. 25, 5833–5843.

    Article  PubMed  CAS  Google Scholar 

  • Vazdarjanova, A., McNaughton, B.L., Barnes, C.A., Worley, P.F. and Guzowski, J.F. (2002) Experience-dependent coincident expression of the effector immediate-early genes arc and Homer 1a in hippocampal and neocortical neuronal networks. J. Neurosci. 22, 10067–10071.

    PubMed  CAS  Google Scholar 

  • Vickers, C.A., Dickson, K.S. and Wyllie, D.J.A. (2005) Induction and maintenance of late-phase long-term potentiation in isolated dendrites of rat hippocampal CA1 pyramidal neurones. J. Physiol. 568, 803–813.

    Article  PubMed  CAS  Google Scholar 

  • Waltereit, R., Dammermann, B., Wulff, P., Scafidi, J., Staubli, U., Kauselmann, G., Bundman, M. and Kuhl, D. (2001) Arg3.1/arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J. Neurosci. 21, 5484–5493.

    PubMed  CAS  Google Scholar 

  • Worley, P.F., Bhat, R.V., Baraban, J.M., Erickson, C.A., McNaughton, B.L. and Barnes, C.A. (1993) Thresholds for synaptic activation of transcription factors in hippocampus: Correlation with long-term enhancement. J. Neurosci. 13, 4776–4786.

    PubMed  CAS  Google Scholar 

  • Yuan, J.P., Kiselyov, K., Shin, D.M., Chen, J., Shcheynikov, N., Kang, S.H., Dehoff, M.H., Schwarz, M.K., Seeburg, P.H., Muallem, S. and Worley, P.F. (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114, 777–789.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, M., Adams, J.P. and Dudek, S.M. (2005) Pattern-dependent role of NMDA receptors in action potential generation: Consequences on extracellular signal-regulated kinase activation. J. Neurosci. 25, 7032–7039.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Adams, J.P., Robinson, R.A., Dudek, S.M. (2008). Role of Action Potentials in Regulating Gene Transcription: Relevance to LTP. In: Dudek, S.M. (eds) Transcriptional Regulation by Neuronal Activity. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73609-9_5

Download citation

Publish with us

Policies and ethics