Dynamic Transcription of the Immediate-Early Gene Arc in Hippocampal Neuronal Networks: Insights into the Molecular and Cellular Bases of Memory Formation

  • John F. Guzowski
  • Ting Nie
  • Teiko Miyashita


The activity-regulated cytoskeletal-associated protein (Arc) is an immediate-early gene (IEG) that is dynamically regulated by neuronal activity. IEGs encode a diverse range of proteins including regulatory transcription factors, structural and signal transduction proteins, growth factors, proteases, and enzymes [reviewed in (Lanahan and Worley, 1998)]. Moreover, several IEGs have been shown to be required for long-lasting synaptic plasticity and memory consolidation processes [reviewed in (authorch19:guzowski2002, yearch19:guzowski2002)]. Of the IEGs investigated in learning and memory, Arc, also referred to as Arg3.1 (activity-regulated gene 3.1), has been of particular interest because of its tight experience-dependent regulation in behaviorally defined neural networks, its mRNA transport to and expression in activated synapses, its capacity for modification of synaptic function, and its critical role in memory consolidation. This chapter provides an overview of the research on Arc’s properties, putative functions, and regulation at cellular and network levels.


NMDA Receptor AMPA Receptor Memory Consolidation Dynamic Transcription Hippocampal Neuronal Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J.P. and Dudek, S.M. (2005) Late-phase long-term potentiation: getting to the nucleus. Nat. Rev. Neurosci. 6, 737–743.PubMedCrossRefGoogle Scholar
  2. Agnihotri, N.T., Hawkins, R.D., Kandel, E.R. and Kentros, C. (2004) The long-term stability of new hippocampal place fields requires new protein synthesis. Proc. Natl. Acad. Sci. USA 101, 3656–3661.Google Scholar
  3. Berridge, M.J. (1998) Neuronal calcium signaling. Neuron 21, 13–26.PubMedCrossRefGoogle Scholar
  4. Brakeman, P.R., Lanahan, A.A., O’Brien, R., Roche, K., Barnes, C.A., Huganir, R.L. and Worley, P.F. (1997) Homer: A protein that selectively binds metabotropic glutamate receptors. Nature 386, 284–288.PubMedCrossRefGoogle Scholar
  5. Burke, S.N., Chawla, M.K., Penner, M.R., Crowell, B.E., Worley, P.F., Barnes, C.A. and McNaughton, B.L. (2005) Differential encoding of behavior and spatial context in deep and superficial layers of the neocortex. Neuron 45, 667–674.PubMedCrossRefGoogle Scholar
  6. Chawla, M.K., Guzowski, J.F., Ramirez-Amaya, V., Lipa, P., Hoffman, K.L., Marriott, L.K., P.F., McNaughton, B.L. and Barnes, C.A. (2005) Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15, 579–586.PubMedCrossRefGoogle Scholar
  7. Chowdhury, S., Shepherd, J.D., Okuno, H., Lyford, G., Petralia, R.S., Plath, N., Kuhl, D., Huganir, R.L. and Worley, P.F. (2006) Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–459.PubMedCrossRefGoogle Scholar
  8. Chwang, W.B., O’Riordan, K.J., Levenson, J.M. and Sweatt, J.D. (2006) ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn. Mem. 13, 322–328.PubMedCrossRefGoogle Scholar
  9. Dickey, C.A., Gordon, M.N., Mason, J.E., Wilson, N.J., Diamond, D.M., Guzowski, J.F. and Morgan, D. (2004) Amyloid suppresses induction of genes critical for memory consolidation in APP + PS1 transgenic mice. J. Neurochem. 88, 434–442.PubMedCrossRefGoogle Scholar
  10. Donai, H., Sugiura, H., Ara, D., Yoshimura, Y., Yamagata, K. and Yamauchi, T. (2003) Interaction of Arc with CaM kinase II and stimulation of neurite extension by Arc in neuroblastoma cells expressing CaM kinase II. Neurosci. Res. 47, 399–408.PubMedCrossRefGoogle Scholar
  11. Dynes, J.L. and Steward, O. (2007) Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. J. Comp. Neurol. 500, 433–447.PubMedCrossRefGoogle Scholar
  12. Ekstrom, A.D., Meltzer, J., McNaughton, B.L. and Barnes, C.A. (2001) NMDA receptor antagonism blocks experience-dependent expansion of hippocampal “place fields”. Neuron 31, 631–638.PubMedCrossRefGoogle Scholar
  13. Fletcher, B.R., Calhoun, M.E., Rapp, P.R. and Shapiro, M.L. (2006) Fornix lesions decouple the induction of hippocampal arc transcription from behavior but not plasticity. J. Neurosci. 26, 1507–1515.PubMedCrossRefGoogle Scholar
  14. Fletcher, B.R., Baxter, M.G., Guzowski, J.F., Shapiro, M.L. and Rapp, P.R. (2007) Selective cholinergic depletion of the hippocampus spares both behaviorally induced Arc transcription and spatial learning and memory. Hippocampus 17, 227–234.PubMedCrossRefGoogle Scholar
  15. Fujimoto, T., Tanaka, H., Kumamaru, E., Okamura, K. and Miki, N. (2004) Arc interacts with microtubules/microtubule-associated protein 2 and attenuates microtubule-associated protein 2 immunoreactivity in the dendrites. J. Neurosci. Res. 76, 51–63.PubMedCrossRefGoogle Scholar
  16. Goelet, P., Castellucci, V.F., Schacher, S. and Kandel, E.R. (1986) The long and the short of long-term memory–a molecular framework. Nature 322, 419–422.PubMedCrossRefGoogle Scholar
  17. Guzowski, J.F. (2002) Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus 12, 86–104.PubMedCrossRefGoogle Scholar
  18. Guzowski, J.F. (2006) Immediate early genes and the mapping of environmental representations in hippocampal neural networks. In: R. Pinaud, L.A. Tremere, (Eds.), Immediate early genes in sensory processing, cognitive performance, and neurological disorders. Springer, New York, pp. 159–176.CrossRefGoogle Scholar
  19. Guzowski, J.F. and McGaugh, J.L. (1997) Interaction of neuromodulatory systems regulating memory storage. In: M. Decker and J.D. Brioni, (Eds.), Alzheimer’s Disease: Molecular Aspects and Pharmacological Treatments. Wiley-Liss. pp 37–61.Google Scholar
  20. Guzowski, J.F., Knierim, J.J. and Moser, E.I. (2004) Ensemble Dynamics of Hippocampal Regions CA3 and CA1. Neuron 44, 581–584.PubMedCrossRefGoogle Scholar
  21. (0000Guzowski, J.F., McNaughton, B.L., Barnes, C.A. and Worley, P.F. (1999) Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124.PubMedCrossRefGoogle Scholar
  22. Guzowski, J.F., Setlow, B., Wagner, E.K. and McGaugh, J.L. (2001a)Experience-dependent gene expression in the rat hippocampus after spatial learning: A comparison of the immediate-early genes Arc, c-fos, and zif268. J. Neurosci. 21, 5089–5098.Google Scholar
  23. Guzowski, J.F., McNaughton, B.L., Barnes, C.A. and Worley, P.F. (2001b) Imaging neural activity with temporal and cellular resolution using FISH. Curr. Opin. Neurobiol. 11, 579–584.CrossRefGoogle Scholar
  24. Guzowski, J.F., Houston, F.P., Worley, P.F. and Barnes, C.A. (2001c) Experience-dependent Arc expression in hippocampal neurons: Role of NMDA receptors and voltage-dependent calcium channels. In: Society for Neuroscience Annual Meeting. San Diego, CA.Google Scholar
  25. Guzowski, J.F., Timlin, J.A., Roysam, B., McNaughton, B.L., Worley, P.F. and Barnes, C.A. (2005) Mapping behaviorally relevant neural circuits with immediate-early gene expression. Curr. Opin. Neurobiol. 15, 599–606.PubMedCrossRefGoogle Scholar
  26. Guzowski, J.F., Lyford, G.L., Stevenson, G.D., Houston, F.P., McGaugh, J.L., Worley, P.F. and Barnes, C.A. (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001.PubMedGoogle Scholar
  27. Guzowski, J.F., Miyashita, T., Chawla, M.K., Sanderson, J., Maes, L.I., Houston, F.P., Lipa, P., McNaughton, B.L., Worley, P.F. and Barnes, C.A. (2006) Recent behavioral history modifies coupling between cell activity and Arc gene transcription in hippocampal CA1 neurons. Proc. Natl. Acad. Sci. USA 103, 1077–1082.PubMedCrossRefGoogle Scholar
  28. Han, J.H., Kushner, S.A., Yiu, A.P., Cole, C.J., Matynia, A., Brown, R.A., Neve, R.L., Guzowski, J.F., Silva, A.J. and Josselyn, S.A. (2007) Neuronal competition and selection during memory formation. Science 316, 457–460.PubMedCrossRefGoogle Scholar
  29. Herdegen, T. and Leah, J.D. (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res. Brain Res. Rev. 28, 370–490.PubMedCrossRefGoogle Scholar
  30. Husi, H., Ward, M.A., Choudhary, J.S., Blackstock, W.P. and Grant, S.G. (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669.PubMedCrossRefGoogle Scholar
  31. Ikegaya, Y., Saito, H. and Abe, K. (1994) Attenuated hippocampal long-term potentiation in basolateral amygdala-lesioned rats. Brain Res. 656, 157–164.PubMedCrossRefGoogle Scholar
  32. Ikegaya, Y., Saito, H. and Abe, K. (1995) Requirement of basolateral amygdala neuron activity for the induction of long-term potentiation in the dentate gyrus in vivo. Brain Res. 671, 351–354.PubMedCrossRefGoogle Scholar
  33. Impey, S., McCorkle, S.R., Cha-Molstad, H., Dwyer, J.M., Yochum, G.S., Boss, J.M., McWeeney, S., Dunn, J.J., Mandel, G. and Goodman, R.H. (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041–1054.PubMedGoogle Scholar
  34. Kang, H., Sun, L.D., Atkins, C.M., Soderling, T.R., Wilson, M.A. and Tonegawa, S. (2001) An important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory. Cell 106, 771–783.PubMedCrossRefGoogle Scholar
  35. Kentros, C., Hargreaves, E., Hawkins, R.D., Kandel, E.R., Shapiro, M. and Muller, R.V. (1998) Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280, 2121–2126.PubMedCrossRefGoogle Scholar
  36. Lanahan, A. and Worley, P. (1998) Immediate-early genes and synaptic function. Neurobiol. Learn. Mem. 70, 37–43.PubMedCrossRefGoogle Scholar
  37. Lee, M.G., Chrobak, J.J., Sik, A., Wiley, R.G. and Buzsaki, G. (1994) Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience 62, 1033–1047.PubMedCrossRefGoogle Scholar
  38. Levenson, J.M., O’Riordan, K.J., Brown, K.D., Trinh, M.A., Molfese, D.L. and Sweatt, J.D. (2004) Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 279, 40545–40559.PubMedCrossRefGoogle Scholar
  39. Limback-Stokin, K., Korzus, E., Nagaoka-Yasuda, R. and Mayford, M. (2004) Nuclear calcium/calmodulin regulates memory consolidation. J. Neurosci. 24, 10858–10867.PubMedCrossRefGoogle Scholar
  40. Link, W., Konietsko, U., Kauselmann, G., Krug, M., Schwanke, B., Frey, U., Kuhl, D. (1995) Somatodendritic expression of an immediate-early gene is regulated by synaptic activity. Proc. Natl. Acad. Sci. USA 92, 5734–5738.PubMedCrossRefGoogle Scholar
  41. Lyford, G.L., Yamagata, K., Kaufmann, W.E., Barnes, C.A., Sanders, L.K., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Lanahan, A.A. and Worley, P.F. (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445.PubMedCrossRefGoogle Scholar
  42. Malinow, R. and Malenka, R.C. (2002) AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126.PubMedCrossRefGoogle Scholar
  43. McGaugh, J.L. (2000) Memory–A Century of Consolidation. Science 287, 248–251.PubMedCrossRefGoogle Scholar
  44. McIntyre, C.K., Miyashita, T., Setlow, B., Marjon, K.D., Steward, O., Guzowski, J.F. and McGaugh, J.L. (2005) Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus. Proc. Natl. Acad. Sci. USA 102, 10718–10723.PubMedCrossRefGoogle Scholar
  45. Messaoudi, E., Ying, S.W., Kanhema, T., Croll, S.D. and Bramham, C.R. (2002) Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J. Neurosci. 22, 7453–7461.PubMedGoogle Scholar
  46. Moga, D.E., Calhoun, M.E., Chowdhury, A., Worley, P., Morrison, J.H. and Shapiro, M.L. (2004) Activity-regulated cytoskeletal-associated protein is localized to recently activated excitatory synapses. Neuroscience 125, 7–11.PubMedCrossRefGoogle Scholar
  47. Mokin, M., Lindahl, J.S. and Keifer, J. (2006) Immediate-early gene-encodedprotein Arc is associated with synaptic delivery of GluR4-containing AMPA receptors during in vitro classical conditioning. J. Neurophysiol. 95, 215–224.PubMedCrossRefGoogle Scholar
  48. Petrovich, G.D., Holland, P.C. and Gallagher, M. (2005) Amygdalar and prefrontal pathways to the lateral hypothalamus are activated by a learned cue that stimulates eating. J. Neurosci. 25, 8295–8302.PubMedCrossRefGoogle Scholar
  49. Plath, N., Ohana, O., Dammermann, B., Errington, M.L., Schmitz, D., Gross, C., Mao, X., Engelsberg, A., Mahlke, C., Welzl, H., Kobalz, U., Stawrakakis, A., Fernandez, E., Waltereit, R., Bick-Sander, A., Therstappen, E., Cooke, S.F., Blanquet, V., Wurst, W., Salmen, B., Bosl, M.R., Lipp, H.P., Grant, S.G., Bliss, T.V., Wolfer, D.P. and Kuhl, D. (2006) Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–444.PubMedCrossRefGoogle Scholar
  50. Ramanan, N., Shen, Y., Sarsfield, S., Lemberger, T., Schutz, G., Linden, D.J. and Ginty, D.D. (2005) SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat. Neurosci. 8, 759–767.PubMedCrossRefGoogle Scholar
  51. Ramirez-Amaya, V., Vazdarjanova, A., Mikhael, D., Rosi, S., Worley, P.F. and Barnes, C.A. (2005) Spatial exploration-induced Arc mRNA and protein expression: evidence for selective, network-specific reactivation. J. Neurosci. 25, 1761–1768.PubMedCrossRefGoogle Scholar
  52. Rial Verde, E.M., Lee-Osbourne, J., Worley, P.F., Malinow, R. and Cline, H.T. (2006) Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52, 461–474.PubMedCrossRefGoogle Scholar
  53. Robertson, L.M., Kerppola, T.K., Vendrell, M., Luk, D., Smeyne, R.J., Bocchiaro, C., Morgan, J.I. and Curran, T. (1995) Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron 14, 241–252.PubMedCrossRefGoogle Scholar
  54. Shepherd, J.D., Rumbaugh, G., Wu, J., Chowdhury, S., Plath, N., Kuhl, D., Huganir, R.L. and Worley, P.F. (2006) Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484.PubMedCrossRefGoogle Scholar
  55. Steward, O. and Levy, W.B. (1982) Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J. Neurosci. 2, 284–291.PubMedGoogle Scholar
  56. Steward, O. and Schuman, E.M. (2001) Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24, 299–325.PubMedCrossRefGoogle Scholar
  57. Steward, O. and Worley, P.F. (2001) Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30, 227–240.PubMedCrossRefGoogle Scholar
  58. Steward, O. and Worley, P. (2002) Local synthesis of proteins at synaptic sites on dendrites: role in synaptic plasticity and memory consolidation? Neurobiol. Learn. Mem. 78, 508–527.PubMedCrossRefGoogle Scholar
  59. Steward, O., Wallace, C.S., Lyford, G.L. and Worley, P.F. (1998) Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21, 741–751.PubMedCrossRefGoogle Scholar
  60. Tzingounis, A.V. and Nicoll, R.A. (2006) Arc/Arg3.1: linking gene expression to synaptic plasticity and memory. Neuron 52, 403–407.PubMedCrossRefGoogle Scholar
  61. Vazdarjanova, A. and Guzowski, J.F. (2004) Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J. Neurosci. 24, 6489–6496.PubMedCrossRefGoogle Scholar
  62. Vazdarjanova, A., McNaughton, B.L., Barnes, C.A., Worley, P.F. and Guzowski, J.F. (2002) Experience-dependent coincident expression of the effector immediate-early genes Arc and Homer 1a in hippocampal and neocortical neuronal networks. J. Neurosci. 22, 10067–10071.PubMedGoogle Scholar
  63. Vazdarjanova, A., Ramirez-Amaya, V., Insel, N., Worley, P.F., Guzowski, J.F. and Barnes, C.A. (2004) Behavior induces expression of the plasticity-related immediate-early gene Arc in excitatory and inhibitory CaMKII - positive neurons. In: Society for Neuroscience 34th Annual Meeting. San Diego, CA.Google Scholar
  64. Vazdarjanova, A., Ramirez-Amaya, V., Insel, N., Plummer, T.K., Rosi, S., Chowdhury, S., Mikhael, D., Worley, P.F., Guzowski, J.F. and Barnes, C.A. (2006) Spatial exploration induces ARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain. J. Comp. Neurol. 498, 317–329.PubMedCrossRefGoogle Scholar
  65. Wallace, C.S., Lyford, G.L., Worley, P.F. and Steward, O. (1998) Differential intracellular sorting of immediate early gene mRNAs depends on signals in the mRNA sequence. J. Neurosci. 18, 26–35.PubMedGoogle Scholar
  66. Waltereit, R., Dammermann, B., Wulff, P., Scafidi, J., Staubli, U., Kauselmann, G., Bundman, M. and Kuhl, D. (2001) Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J. Neurosci. 21, 5484–5493.PubMedGoogle Scholar
  67. Xia, Z., Dudek, H., Miranti, C.K. and Greenberg, M.E. (1996) Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5425–5436.PubMedGoogle Scholar
  68. Yin, Y., Edelman, G.M. and Vanderklish, P.W. (2002) The brain-derived neurotrophic factor enhances synthesis of Arc in synaptoneurosomes. Proc. Natl. Acad. Sci. USA 99, 2368–2373.PubMedCrossRefGoogle Scholar
  69. Ying, S.W., Futter, M., Rosenblum, K., Webber, M.J., Hunt, S.P., Bliss, T.V. and Bramham, C.R. (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci. 22, 1532–1540.PubMedGoogle Scholar
  70. Zhang, W.P., Guzowski, J.F. and Thomas, S.A. (2005) Mapping neuronal activation and the influence of adrenergic signaling during contextual memory retrieval. Learn. Mem. 12, 239–247.PubMedCrossRefGoogle Scholar
  71. Zou, Z. and Buck, L.B. (2006) Combinatorial effects of odorant mixes in olfactory cortex. Science 311, 1477–1481.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John F. Guzowski
  • Ting Nie
  • Teiko Miyashita

There are no affiliations available

Personalised recommendations