Skip to main content

Dynamic Transcription of the Immediate-Early Gene Arc in Hippocampal Neuronal Networks: Insights into the Molecular and Cellular Bases of Memory Formation

  • Chapter
Transcriptional Regulation by Neuronal Activity

Abstract

The activity-regulated cytoskeletal-associated protein (Arc) is an immediate-early gene (IEG) that is dynamically regulated by neuronal activity. IEGs encode a diverse range of proteins including regulatory transcription factors, structural and signal transduction proteins, growth factors, proteases, and enzymes [reviewed in (Lanahan and Worley, 1998)]. Moreover, several IEGs have been shown to be required for long-lasting synaptic plasticity and memory consolidation processes [reviewed in (authorch19:guzowski2002, yearch19:guzowski2002)]. Of the IEGs investigated in learning and memory, Arc, also referred to as Arg3.1 (activity-regulated gene 3.1), has been of particular interest because of its tight experience-dependent regulation in behaviorally defined neural networks, its mRNA transport to and expression in activated synapses, its capacity for modification of synaptic function, and its critical role in memory consolidation. This chapter provides an overview of the research on Arc’s properties, putative functions, and regulation at cellular and network levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.P. and Dudek, S.M. (2005) Late-phase long-term potentiation: getting to the nucleus. Nat. Rev. Neurosci. 6, 737–743.

    Article  PubMed  CAS  Google Scholar 

  • Agnihotri, N.T., Hawkins, R.D., Kandel, E.R. and Kentros, C. (2004) The long-term stability of new hippocampal place fields requires new protein synthesis. Proc. Natl. Acad. Sci. USA 101, 3656–3661.

    Google Scholar 

  • Berridge, M.J. (1998) Neuronal calcium signaling. Neuron 21, 13–26.

    Article  PubMed  CAS  Google Scholar 

  • Brakeman, P.R., Lanahan, A.A., O’Brien, R., Roche, K., Barnes, C.A., Huganir, R.L. and Worley, P.F. (1997) Homer: A protein that selectively binds metabotropic glutamate receptors. Nature 386, 284–288.

    Article  PubMed  CAS  Google Scholar 

  • Burke, S.N., Chawla, M.K., Penner, M.R., Crowell, B.E., Worley, P.F., Barnes, C.A. and McNaughton, B.L. (2005) Differential encoding of behavior and spatial context in deep and superficial layers of the neocortex. Neuron 45, 667–674.

    Article  PubMed  CAS  Google Scholar 

  • Chawla, M.K., Guzowski, J.F., Ramirez-Amaya, V., Lipa, P., Hoffman, K.L., Marriott, L.K., P.F., McNaughton, B.L. and Barnes, C.A. (2005) Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15, 579–586.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury, S., Shepherd, J.D., Okuno, H., Lyford, G., Petralia, R.S., Plath, N., Kuhl, D., Huganir, R.L. and Worley, P.F. (2006) Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–459.

    Article  PubMed  CAS  Google Scholar 

  • Chwang, W.B., O’Riordan, K.J., Levenson, J.M. and Sweatt, J.D. (2006) ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn. Mem. 13, 322–328.

    Article  PubMed  CAS  Google Scholar 

  • Dickey, C.A., Gordon, M.N., Mason, J.E., Wilson, N.J., Diamond, D.M., Guzowski, J.F. and Morgan, D. (2004) Amyloid suppresses induction of genes critical for memory consolidation in APP + PS1 transgenic mice. J. Neurochem. 88, 434–442.

    Article  PubMed  CAS  Google Scholar 

  • Donai, H., Sugiura, H., Ara, D., Yoshimura, Y., Yamagata, K. and Yamauchi, T. (2003) Interaction of Arc with CaM kinase II and stimulation of neurite extension by Arc in neuroblastoma cells expressing CaM kinase II. Neurosci. Res. 47, 399–408.

    Article  PubMed  CAS  Google Scholar 

  • Dynes, J.L. and Steward, O. (2007) Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. J. Comp. Neurol. 500, 433–447.

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom, A.D., Meltzer, J., McNaughton, B.L. and Barnes, C.A. (2001) NMDA receptor antagonism blocks experience-dependent expansion of hippocampal “place fields”. Neuron 31, 631–638.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, B.R., Calhoun, M.E., Rapp, P.R. and Shapiro, M.L. (2006) Fornix lesions decouple the induction of hippocampal arc transcription from behavior but not plasticity. J. Neurosci. 26, 1507–1515.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, B.R., Baxter, M.G., Guzowski, J.F., Shapiro, M.L. and Rapp, P.R. (2007) Selective cholinergic depletion of the hippocampus spares both behaviorally induced Arc transcription and spatial learning and memory. Hippocampus 17, 227–234.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto, T., Tanaka, H., Kumamaru, E., Okamura, K. and Miki, N. (2004) Arc interacts with microtubules/microtubule-associated protein 2 and attenuates microtubule-associated protein 2 immunoreactivity in the dendrites. J. Neurosci. Res. 76, 51–63.

    Article  PubMed  CAS  Google Scholar 

  • Goelet, P., Castellucci, V.F., Schacher, S. and Kandel, E.R. (1986) The long and the short of long-term memory–a molecular framework. Nature 322, 419–422.

    Article  PubMed  CAS  Google Scholar 

  • Guzowski, J.F. (2002) Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus 12, 86–104.

    Article  PubMed  CAS  Google Scholar 

  • Guzowski, J.F. (2006) Immediate early genes and the mapping of environmental representations in hippocampal neural networks. In: R. Pinaud, L.A. Tremere, (Eds.), Immediate early genes in sensory processing, cognitive performance, and neurological disorders. Springer, New York, pp. 159–176.

    Chapter  Google Scholar 

  • Guzowski, J.F. and McGaugh, J.L. (1997) Interaction of neuromodulatory systems regulating memory storage. In: M. Decker and J.D. Brioni, (Eds.), Alzheimer’s Disease: Molecular Aspects and Pharmacological Treatments. Wiley-Liss. pp 37–61.

    Google Scholar 

  • Guzowski, J.F., Knierim, J.J. and Moser, E.I. (2004) Ensemble Dynamics of Hippocampal Regions CA3 and CA1. Neuron 44, 581–584.

    Article  PubMed  CAS  Google Scholar 

  • (0000Guzowski, J.F., McNaughton, B.L., Barnes, C.A. and Worley, P.F. (1999) Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124.

    Article  PubMed  CAS  Google Scholar 

  • Guzowski, J.F., Setlow, B., Wagner, E.K. and McGaugh, J.L. (2001a)Experience-dependent gene expression in the rat hippocampus after spatial learning: A comparison of the immediate-early genes Arc, c-fos, and zif268. J. Neurosci. 21, 5089–5098.

    CAS  Google Scholar 

  • Guzowski, J.F., McNaughton, B.L., Barnes, C.A. and Worley, P.F. (2001b) Imaging neural activity with temporal and cellular resolution using FISH. Curr. Opin. Neurobiol. 11, 579–584.

    Article  CAS  Google Scholar 

  • Guzowski, J.F., Houston, F.P., Worley, P.F. and Barnes, C.A. (2001c) Experience-dependent Arc expression in hippocampal neurons: Role of NMDA receptors and voltage-dependent calcium channels. In: Society for Neuroscience Annual Meeting. San Diego, CA.

    Google Scholar 

  • Guzowski, J.F., Timlin, J.A., Roysam, B., McNaughton, B.L., Worley, P.F. and Barnes, C.A. (2005) Mapping behaviorally relevant neural circuits with immediate-early gene expression. Curr. Opin. Neurobiol. 15, 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Guzowski, J.F., Lyford, G.L., Stevenson, G.D., Houston, F.P., McGaugh, J.L., Worley, P.F. and Barnes, C.A. (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001.

    PubMed  CAS  Google Scholar 

  • Guzowski, J.F., Miyashita, T., Chawla, M.K., Sanderson, J., Maes, L.I., Houston, F.P., Lipa, P., McNaughton, B.L., Worley, P.F. and Barnes, C.A. (2006) Recent behavioral history modifies coupling between cell activity and Arc gene transcription in hippocampal CA1 neurons. Proc. Natl. Acad. Sci. USA 103, 1077–1082.

    Article  PubMed  CAS  Google Scholar 

  • Han, J.H., Kushner, S.A., Yiu, A.P., Cole, C.J., Matynia, A., Brown, R.A., Neve, R.L., Guzowski, J.F., Silva, A.J. and Josselyn, S.A. (2007) Neuronal competition and selection during memory formation. Science 316, 457–460.

    Article  PubMed  CAS  Google Scholar 

  • Herdegen, T. and Leah, J.D. (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res. Brain Res. Rev. 28, 370–490.

    Article  PubMed  CAS  Google Scholar 

  • Husi, H., Ward, M.A., Choudhary, J.S., Blackstock, W.P. and Grant, S.G. (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669.

    Article  PubMed  CAS  Google Scholar 

  • Ikegaya, Y., Saito, H. and Abe, K. (1994) Attenuated hippocampal long-term potentiation in basolateral amygdala-lesioned rats. Brain Res. 656, 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Ikegaya, Y., Saito, H. and Abe, K. (1995) Requirement of basolateral amygdala neuron activity for the induction of long-term potentiation in the dentate gyrus in vivo. Brain Res. 671, 351–354.

    Article  PubMed  CAS  Google Scholar 

  • Impey, S., McCorkle, S.R., Cha-Molstad, H., Dwyer, J.M., Yochum, G.S., Boss, J.M., McWeeney, S., Dunn, J.J., Mandel, G. and Goodman, R.H. (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041–1054.

    PubMed  CAS  Google Scholar 

  • Kang, H., Sun, L.D., Atkins, C.M., Soderling, T.R., Wilson, M.A. and Tonegawa, S. (2001) An important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory. Cell 106, 771–783.

    Article  PubMed  CAS  Google Scholar 

  • Kentros, C., Hargreaves, E., Hawkins, R.D., Kandel, E.R., Shapiro, M. and Muller, R.V. (1998) Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280, 2121–2126.

    Article  PubMed  CAS  Google Scholar 

  • Lanahan, A. and Worley, P. (1998) Immediate-early genes and synaptic function. Neurobiol. Learn. Mem. 70, 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.G., Chrobak, J.J., Sik, A., Wiley, R.G. and Buzsaki, G. (1994) Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience 62, 1033–1047.

    Article  PubMed  CAS  Google Scholar 

  • Levenson, J.M., O’Riordan, K.J., Brown, K.D., Trinh, M.A., Molfese, D.L. and Sweatt, J.D. (2004) Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 279, 40545–40559.

    Article  PubMed  CAS  Google Scholar 

  • Limback-Stokin, K., Korzus, E., Nagaoka-Yasuda, R. and Mayford, M. (2004) Nuclear calcium/calmodulin regulates memory consolidation. J. Neurosci. 24, 10858–10867.

    Article  PubMed  CAS  Google Scholar 

  • Link, W., Konietsko, U., Kauselmann, G., Krug, M., Schwanke, B., Frey, U., Kuhl, D. (1995) Somatodendritic expression of an immediate-early gene is regulated by synaptic activity. Proc. Natl. Acad. Sci. USA 92, 5734–5738.

    Article  PubMed  CAS  Google Scholar 

  • Lyford, G.L., Yamagata, K., Kaufmann, W.E., Barnes, C.A., Sanders, L.K., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Lanahan, A.A. and Worley, P.F. (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445.

    Article  PubMed  CAS  Google Scholar 

  • Malinow, R. and Malenka, R.C. (2002) AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126.

    Article  PubMed  CAS  Google Scholar 

  • McGaugh, J.L. (2000) Memory–A Century of Consolidation. Science 287, 248–251.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre, C.K., Miyashita, T., Setlow, B., Marjon, K.D., Steward, O., Guzowski, J.F. and McGaugh, J.L. (2005) Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus. Proc. Natl. Acad. Sci. USA 102, 10718–10723.

    Article  PubMed  CAS  Google Scholar 

  • Messaoudi, E., Ying, S.W., Kanhema, T., Croll, S.D. and Bramham, C.R. (2002) Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J. Neurosci. 22, 7453–7461.

    PubMed  CAS  Google Scholar 

  • Moga, D.E., Calhoun, M.E., Chowdhury, A., Worley, P., Morrison, J.H. and Shapiro, M.L. (2004) Activity-regulated cytoskeletal-associated protein is localized to recently activated excitatory synapses. Neuroscience 125, 7–11.

    Article  PubMed  CAS  Google Scholar 

  • Mokin, M., Lindahl, J.S. and Keifer, J. (2006) Immediate-early gene-encodedprotein Arc is associated with synaptic delivery of GluR4-containing AMPA receptors during in vitro classical conditioning. J. Neurophysiol. 95, 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Petrovich, G.D., Holland, P.C. and Gallagher, M. (2005) Amygdalar and prefrontal pathways to the lateral hypothalamus are activated by a learned cue that stimulates eating. J. Neurosci. 25, 8295–8302.

    Article  PubMed  CAS  Google Scholar 

  • Plath, N., Ohana, O., Dammermann, B., Errington, M.L., Schmitz, D., Gross, C., Mao, X., Engelsberg, A., Mahlke, C., Welzl, H., Kobalz, U., Stawrakakis, A., Fernandez, E., Waltereit, R., Bick-Sander, A., Therstappen, E., Cooke, S.F., Blanquet, V., Wurst, W., Salmen, B., Bosl, M.R., Lipp, H.P., Grant, S.G., Bliss, T.V., Wolfer, D.P. and Kuhl, D. (2006) Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–444.

    Article  PubMed  CAS  Google Scholar 

  • Ramanan, N., Shen, Y., Sarsfield, S., Lemberger, T., Schutz, G., Linden, D.J. and Ginty, D.D. (2005) SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat. Neurosci. 8, 759–767.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Amaya, V., Vazdarjanova, A., Mikhael, D., Rosi, S., Worley, P.F. and Barnes, C.A. (2005) Spatial exploration-induced Arc mRNA and protein expression: evidence for selective, network-specific reactivation. J. Neurosci. 25, 1761–1768.

    Article  PubMed  CAS  Google Scholar 

  • Rial Verde, E.M., Lee-Osbourne, J., Worley, P.F., Malinow, R. and Cline, H.T. (2006) Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52, 461–474.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, L.M., Kerppola, T.K., Vendrell, M., Luk, D., Smeyne, R.J., Bocchiaro, C., Morgan, J.I. and Curran, T. (1995) Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron 14, 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, J.D., Rumbaugh, G., Wu, J., Chowdhury, S., Plath, N., Kuhl, D., Huganir, R.L. and Worley, P.F. (2006) Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484.

    Article  PubMed  CAS  Google Scholar 

  • Steward, O. and Levy, W.B. (1982) Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J. Neurosci. 2, 284–291.

    PubMed  CAS  Google Scholar 

  • Steward, O. and Schuman, E.M. (2001) Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24, 299–325.

    Article  PubMed  CAS  Google Scholar 

  • Steward, O. and Worley, P.F. (2001) Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30, 227–240.

    Article  PubMed  CAS  Google Scholar 

  • Steward, O. and Worley, P. (2002) Local synthesis of proteins at synaptic sites on dendrites: role in synaptic plasticity and memory consolidation? Neurobiol. Learn. Mem. 78, 508–527.

    Article  PubMed  CAS  Google Scholar 

  • Steward, O., Wallace, C.S., Lyford, G.L. and Worley, P.F. (1998) Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21, 741–751.

    Article  PubMed  CAS  Google Scholar 

  • Tzingounis, A.V. and Nicoll, R.A. (2006) Arc/Arg3.1: linking gene expression to synaptic plasticity and memory. Neuron 52, 403–407.

    Article  PubMed  CAS  Google Scholar 

  • Vazdarjanova, A. and Guzowski, J.F. (2004) Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J. Neurosci. 24, 6489–6496.

    Article  PubMed  CAS  Google Scholar 

  • Vazdarjanova, A., McNaughton, B.L., Barnes, C.A., Worley, P.F. and Guzowski, J.F. (2002) Experience-dependent coincident expression of the effector immediate-early genes Arc and Homer 1a in hippocampal and neocortical neuronal networks. J. Neurosci. 22, 10067–10071.

    PubMed  CAS  Google Scholar 

  • Vazdarjanova, A., Ramirez-Amaya, V., Insel, N., Worley, P.F., Guzowski, J.F. and Barnes, C.A. (2004) Behavior induces expression of the plasticity-related immediate-early gene Arc in excitatory and inhibitory CaMKII - positive neurons. In: Society for Neuroscience 34th Annual Meeting. San Diego, CA.

    Google Scholar 

  • Vazdarjanova, A., Ramirez-Amaya, V., Insel, N., Plummer, T.K., Rosi, S., Chowdhury, S., Mikhael, D., Worley, P.F., Guzowski, J.F. and Barnes, C.A. (2006) Spatial exploration induces ARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain. J. Comp. Neurol. 498, 317–329.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, C.S., Lyford, G.L., Worley, P.F. and Steward, O. (1998) Differential intracellular sorting of immediate early gene mRNAs depends on signals in the mRNA sequence. J. Neurosci. 18, 26–35.

    PubMed  CAS  Google Scholar 

  • Waltereit, R., Dammermann, B., Wulff, P., Scafidi, J., Staubli, U., Kauselmann, G., Bundman, M. and Kuhl, D. (2001) Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J. Neurosci. 21, 5484–5493.

    PubMed  CAS  Google Scholar 

  • Xia, Z., Dudek, H., Miranti, C.K. and Greenberg, M.E. (1996) Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5425–5436.

    PubMed  CAS  Google Scholar 

  • Yin, Y., Edelman, G.M. and Vanderklish, P.W. (2002) The brain-derived neurotrophic factor enhances synthesis of Arc in synaptoneurosomes. Proc. Natl. Acad. Sci. USA 99, 2368–2373.

    Article  PubMed  CAS  Google Scholar 

  • Ying, S.W., Futter, M., Rosenblum, K., Webber, M.J., Hunt, S.P., Bliss, T.V. and Bramham, C.R. (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci. 22, 1532–1540.

    PubMed  CAS  Google Scholar 

  • Zhang, W.P., Guzowski, J.F. and Thomas, S.A. (2005) Mapping neuronal activation and the influence of adrenergic signaling during contextual memory retrieval. Learn. Mem. 12, 239–247.

    Article  PubMed  Google Scholar 

  • Zou, Z. and Buck, L.B. (2006) Combinatorial effects of odorant mixes in olfactory cortex. Science 311, 1477–1481.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Guzowski, J.F., Nie, T., Miyashita, T. (2008). Dynamic Transcription of the Immediate-Early Gene Arc in Hippocampal Neuronal Networks: Insights into the Molecular and Cellular Bases of Memory Formation. In: Dudek, S.M. (eds) Transcriptional Regulation by Neuronal Activity. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73609-9_19

Download citation

Publish with us

Policies and ethics