CREB Responsive Transcription and Memory Formation

  • Thomas C. TubonJr.
  • Jerry C.P. Yin


Inhibitors of protein synthesis block memory formation when they are acutely delivered around the time of behavioral training. This requirement for de novo synthesis of proteins includes a prerequisite for gene transcription, since inhibitors of RNA polymerase II display similar effects. These observations, together with the strong biochemical and genetic evidence in Aplysia and Drosophila, led to experiments testing the importance of the cAMP-Response Element (CRE) and its Binding protein (CREB) in long-term memory and synaptic plasticity. In this chapter, we will review the molecular biology of CREB genes, before summarizing the work that demonstrates CREB is an important factor in memory formation. We will then address the more complex issue of why this requirement remains controversial. Drawing from emerging work in Drosophila, we will discuss the complexity of CREB gene expression and how revealing the molecular mechanisms that underlie CREB activity may provide insights and resolutions to the earlier experimental discrepancies.


Morris Water Maze Memory Formation cAMP Response Element Binding Conditioned Taste Aversion Contextual Fear Conditioning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azami, S., Wagatsuma, A., Sadamoto, H., Hatakeyama, D., Usami, T., Fujie, M., Koyanagi, R., Azumi, K., Fujito, Y., Lukowiak, K. and Ito, E. (2006) Altered gene activity correlated with long-term memory formation of conditioned taste aversion in Lymnaea. J. Neurosci. Res. 84, 1610–1620.PubMedCrossRefGoogle Scholar
  2. Balschun, D., Wolfer, D.P., Gass, P., Mantamadiotis, T., Welzl, H., Schutz, G., Frey, J.U. and Lipp, H.P. (2003) Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J. Neurosci. 23, 6304–6314.PubMedGoogle Scholar
  3. Bartsch, D., Casadio, A., Karl, K.A., Serodio, P., and Kandel, E.R. (1998) CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 95, 211–223.PubMedCrossRefGoogle Scholar
  4. Bartsch, D., Ghirardi, M., Skehel, P.A., Karl, K.A., Herder, S.P., Chen, M., Bailey, C.H. and Kandel, E.R. (1995) Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell 83, 979–992.PubMedCrossRefGoogle Scholar
  5. Belvin, M.P., Zhou, H., Yin, J.C. (1999) The Drosophila dCREB2 gene affects the circadian clock. Neuron 22, 777–787.PubMedCrossRefGoogle Scholar
  6. Blendy, J.A., Kaestner, K.H., Schmid, W., Gass, P. and Schutz, G. (1996) Targeting of the CREB gene leads to up-regulation of a novel CREB mRNA isoform. EMBO J. 15, 1098–1106.PubMedGoogle Scholar
  7. Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G. and Silva, A.J. (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68.PubMedCrossRefGoogle Scholar
  8. Bozon, B., Kelly, A., Josselyn, S.A., Silva, A.J., Davis, S. and Laroche, S. (2003) MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358, 805–814.PubMedCrossRefGoogle Scholar
  9. Brightwell, J.J., Smith, C.A., Countryman, R.A., Neve, R.L. and Colombo, P.J. (2005) Hippocampal overexpression of mutant CREB blocks long-term, but not short-term memory for a socially transmitted food preference. Learn. Mem. 12, 12–17.PubMedCrossRefGoogle Scholar
  10. Chera, S., Kaloulis, K. and Galliot, B. (2007) The cAMP response element binding protein (CREB) as an integrative HUB selector in metazoans: Clues from the hydra model system. Biosys tems 87, 191–203.CrossRefGoogle Scholar
  11. Chrivia, J.C., Kwok, R.P., Lamb, N., Hagiwara, M., Montminy, M.R. and Goodman, R.H. (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859.PubMedCrossRefGoogle Scholar
  12. Comerford, K.M., Leonard, M.O., Karhausen, J., Carey, R., Colgan, S.P. and Taylor, C.T. (2003) Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc. Natl. Acad. Sci. USA 100, 986–991.PubMedCrossRefGoogle Scholar
  13. Conkright, M.D., Canettieri, G., Screaton, R., Guzman, E., Miraglia, L., Hogenesch, J.B. and Montminy, M. (2003) TORCs: transducers of regulated CREB activity. Mol. Cell. 12, 413–423.PubMedCrossRefGoogle Scholar
  14. Crabbe, J.C., Wahlsten, D. and Dudek, B.C. (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284, 1670–1672.PubMedCrossRefGoogle Scholar
  15. Daniel, P.B. and Habener, J.F. (1998) Cyclical alternative exon splicing of transcription factor cyclic adenosine monophosphate response element-binding protein (CREB) messenger ribonucleic acid during rat spermatogenesis. Endocrinology 139, 3721–3729.PubMedCrossRefGoogle Scholar
  16. Dash, P.K., Hochner, B. and Kandel, E.R. (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345, 718–721PubMedCrossRefGoogle Scholar
  17. Eberl, T., Perkins, L.A., Engelstein, M., Hilliker, A.J., Perrimon, N. (1992) Genetic and developmental analysis of polytene section 17 of the X chromosome of Drosophila melanogaster. Genetics 130, 569–583.PubMedGoogle Scholar
  18. Eisenhardt, D., Friedrich, A., Stollhoff, N., Muller, U., Kress, H. and Menzel, R. (2003) The AmCREB gene is an ortholog of the mammalian CREB/CREM family of transcription factors and encodes several splice variants in the honeybee brain. Insect. Mol. Biol. 12, 373–382.PubMedCrossRefGoogle Scholar
  19. Fenaroli, A., Vujanac, M., De Cesare, D. and Zimarino, V. (2004) A small-scale survey identifies selective and quantitative nucleo-cytoplasmic shuttling of a subset of CREM transcription factors. Exp. Cell Res. 299, 209–226.PubMedCrossRefGoogle Scholar
  20. Fimia, G.M., De Cesare, D., Sassone-Corsi, P. (1999) CBP-independent activation of CREM and CREB by the LIM-only protein ACT. Nature 398, 165–169.PubMedCrossRefGoogle Scholar
  21. Gass, P., Wolfer, D.P., Balschun, D., Rudolph, D., Frey, U., Lipp, H.P. and Schutz, G. (1998) Deficits in memory tasks of mice with CREB mutations depend on gene dosage. Learn. Mem. 5, 274–288.PubMedGoogle Scholar
  22. Gau, D., Lemberger, T., von Gall, C., Kretz, O., Le Minh, N., Gass, P., Schmid, W., Schibler, U., Korf, H.W. and Schutz, G. (2002) Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34, 245–253.PubMedCrossRefGoogle Scholar
  23. Gellersen, B., Kempf, R., Sandhowe, R., Weinbauer, G.F. and Behr, R. (2002) Novel leader exons of the cyclic adenosine 3’, 5’-monophosphate response element modulator (CREM) gene, transcribed from the promoters P3 and P4, are highly testis-specific in primates. Mol. Hum. Reprod. 8, 965–976.PubMedCrossRefGoogle Scholar
  24. Ginty, D.D., Kornhauser, J.M., Thompson, M.A., Bading, H., Mayo, K.E., Takahashi, J.S. and Greenberg, M.E. (1993) Regulation of CREB phosphorylation in the superchiasmatic nucleus by light and a circadian clock. Science 260, 238–241.PubMedCrossRefGoogle Scholar
  25. Girardet, C., Walker, W.H. and Habener, J.F. (1996) An alternatively spliced polycistronic mRNA encoding cyclic adenosine 3’,5’-monophosphate (cAMP)-responsive transcription factor CREB (cAMP response element-binding protein) in human testis extinguishes expression of an internally translated inhibitor CREB isoform. Mol. Endocrinol. 10, 879–891.PubMedCrossRefGoogle Scholar
  26. Goren, I., Tavor, E., Goldblum, A. and Honigman, A. (2001) Two Cysteine residues in the DNA-binding domain of CREB control binding to CRE and CREB-mediated gene expression. J. Mol. Biol. 313, 695–709.PubMedCrossRefGoogle Scholar
  27. Graves, L., Dalvi, A., Lucki, I., Blendy, J.A. and Abel, T. (2002) Behavioral analysis of CREB alphadelta mutation on a B6/129 F1 hybrid background. Hippocampus 12, 18–26.PubMedCrossRefGoogle Scholar
  28. Guzowski, J.F. and McGaugh, J.L. (1997) Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl. Acad. Sci. USA 94, 2693–2698.PubMedCrossRefGoogle Scholar
  29. Hintermann, R. and Parish, R.W. (1979) The intracellular location of adenylyl cyclase in the cellular slime molds Dictyostelium discoideum and Polysphondylium pallidum. Exp. Cell Res. 123, 429–434.PubMedCrossRefGoogle Scholar
  30. Huang, X., Zhang, J., Lu, L., Yin, L., Xu, M., Wang, Y., Zhou, Z. and Sha, J. (2004) Cloning and expression of a novel CREB mRNA splice variant in human testis. Reproduction 128, 775–782.PubMedCrossRefGoogle Scholar
  31. s(0000)Hummler, E., Cole, T.J., Blendy, J.A., Ganss, R., Aguzzi, A., Schmid, W., Beermann, F. and Schutz, G. (1994) Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc. Natl. Acad. Sci. USA 91, 5647–5651.PubMedCrossRefGoogle Scholar
  32. Impey, S., Smith, D.M., Obrietan, K., Donahue, R., Wade, C. and Storm, D.R. (1998) Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1, 595–601.PubMedCrossRefGoogle Scholar
  33. Johannessen, M. and Moens, U. (2007) Multisite phosphorylation of the cAMP response element-binding protein (CREB) by a diversity of protein kinases. Front. Biosci. 12, 1814–1832.PubMedGoogle Scholar
  34. Josselyn, S.A., Kida, S. and Silva, A.J. (2004) Inducible repression of CREB function disrupts amygdala-dependent memory. Neurobiol. Learn. Mem. 82, 159–163.PubMedCrossRefGoogle Scholar
  35. Josselyn, S.A., Shi, C., Carlezon, W.A., Jr., Neve, R.L., Nestler, E.J. and Davis, M. (2001) Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J. Neurosci. 21, 2404–2412.PubMedGoogle Scholar
  36. Khidekel, N. and Hsieh-Wilson, L.C. (2004) A ’molecular switchboard’–covalent modifications to proteins and their impact on transcription. Org. Biomol. Chem. 2, 1–7.PubMedCrossRefGoogle Scholar
  37. Kida, S., Josselyn, S.A., de Ortiz, S.P., Kogan, J.H., Chevere, I., Masushige, S. and Silva, A.J. (2002) CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5, 348–355.PubMedCrossRefGoogle Scholar
  38. Kogan, J.H., Frankland, P.W. and Silva, A.J. (2000) Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus 10, 47–56.PubMedCrossRefGoogle Scholar
  39. Kogan, J.H., Frankland, P.W., Blendy, J.A., Coblentz, J., Marowitz, Z., Schutz, G. and Silva, A.J. (1997) Spaced training induces normal long-term memory in CREB mutant mice. Curr. Biol. 7, 1–11.PubMedCrossRefGoogle Scholar
  40. Kornhauser, J.M., Cowan, C.W., Shaywitz, A.J., Dolmetsch, R.E., Griffith, E.C., Hu, L.S., Haddad, C., Xia, Z. and Greenberg, M.E. (2002) CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34, 221–233.PubMedCrossRefGoogle Scholar
  41. Kwok, R.P., Lundblad, J.R., Chrivia, J.C., Richards, J.P., Bachinger, H.P., Brennan, R.G., Roberts, S.G., Green, M.R. and Goodman, R.H. (1994) Nuclear Protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–226PubMedCrossRefGoogle Scholar
  42. Lalli, E., Lee, J.S., Lamas, M., Tamai, K., Zazopoulos, E., Nantel, F., Penna, L., Foulkes, N.S. and Sassone-Corsi, P. (1996) The nuclear response to cAMP: role of transcription factor CREM. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351, 201–209.PubMedCrossRefGoogle Scholar
  43. Lamprecht, R., Hazvi, S. and Dudai, Y. (1997) cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory. J. Neurosci. 17, 8443–8450.PubMedGoogle Scholar
  44. Maldonado, R., Blendy, J.A., Tzavara, E., Gass, P., Roques, B.P., Hanoune, J. and Schutz, G. (1996) Reduction of morphine abstinence in mice with a mutation in the gene encoding CREB. Science 273, 657–659.PubMedCrossRefGoogle Scholar
  45. Mantamadiotis, T., Lemberger, T., Bleckmann, S.C., Kern, H., Kretz, O., Martin Villalba, A., Tronche, F., Kellendonk, C., Gau, D., Kapfhammer, J., Otto, C., Schmidt, W. and Schutz, G. (2002) Disruption of CREB function in brain leads to neurodegeneration Nat. Genet. 31, 47–54.PubMedCrossRefGoogle Scholar
  46. Mayr, B. and Montminy, M. (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell. Biol 2, 599–609.PubMedCrossRefGoogle Scholar
  47. Meyer, T.E. and Habener, J.F. (1993) Cyclic adenosine 3’,5’-monophosphate response element binding protein (CREB) and related transcription-activating deoxyribonucleic acid-binding proteins. Endocr. Rev. 14, 269–290.PubMedCrossRefGoogle Scholar
  48. Meyer, T.E., Waeber, G., Lin, J., Beckmann, W. and Habener, J.F. (1993) The promoter of the gene encoding 3’,5’-cyclic adenosine monophosphate (cAMP) responsive element binding protein contains cAMP response elements: evidence for positive autoregulation of gene transcription. Endocrinology 132, 770–780PubMedCrossRefGoogle Scholar
  49. Morris, R.G., Garrud, P., Rawlins, J.N. and O’Keefe, J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683.PubMedCrossRefGoogle Scholar
  50. Mouravlev, A., Dunning, J., Young, D. and During, M.J. (2006) Somatic gene transfer of cAMP response element binding protein attenuates memory impairment in aging rats Proc. Natl. Acad. Sci. 103, 4705–4710.CrossRefGoogle Scholar
  51. Perazzona, B., Isabel, G., Preat, T. and Davis, R.L. (2004) The role of cAMP response element-binding protein in Drosophila long-term memory. J. Neurosci. 24, 8823–8828.PubMedCrossRefGoogle Scholar
  52. Peters, D.J., Cammans, M., Smit, S., Spek, W., van Lookeren Campagne, M.M. and Schaap, P. (1991) Control of cAMP-induced gene expression by divergent signal transduction pathways. Dev. Genet. 12, 25–34.PubMedCrossRefGoogle Scholar
  53. Pietruck, C., Xie, G.X., Sharma, M., Meuser, T. and Palmer, P.P. (1999a) Alternative exon splicing of cyclic AMP response element-binding protein in peripheral sensory and sympathetic ganglia of the rat. Life Sci. 65, 2205–2213.CrossRefGoogle Scholar
  54. Pietruck, C., Xie, G.X., Sharma, M., Meuser, T. and Pierce Palmer, P. (1999) Multiple splice patterns of cyclic AMP response element-binding protein mRNA in the central nervous system of the rat. Brain Res. Mol. Brain Res. 69, 286–289.PubMedCrossRefGoogle Scholar
  55. Ribeiro, M.J., Serfozo, Z., Papp, A., Kemenes, I., O’Shea, M., Yin, J.C., Benjamin, P.R. and Kemenes, G. (2003) Cyclic AMP response element-binding (CREB)-like proteins in a molluscan brain: cellular localization and learning-induced phosphorylation. Eur. J. Neurosci. 18, 1223–1234.PubMedCrossRefGoogle Scholar
  56. Ruppert, S., Cole, T.J., Boshart, M., Schmid, E. and Schutz, G. (1992) Multiple mRNA isoforms of the transcription activator protein CREB: generation by alternative splicing and specific expression in primary spermatocytes. EMBO J. 11, 1503–1512.PubMedGoogle Scholar
  57. Sadamoto, H., Sato, H., Kobayashi, S., Murakami, J., Aonuma, H., Ando, H., Fujito, Y., Hamano, K., Awaji, M., Lukowiak, K., Urano, A. and Ito, E. (2004) CREB in the pond snail Lymnaea stagnalis: cloning, gene expression, and function in identifiable neurons of the central nervous system. J. Neurobiol. 58, 455–466.PubMedCrossRefGoogle Scholar
  58. Sanborn, B.M., Millan, J.L., Meistrich, M.L. and Moore, L.C. (1997) Alternative splicing of CREB and CREM mRNAs in an immortalized germ cell line. J. Androl. 18, 62–70.PubMedGoogle Scholar
  59. Shanware, N.P., Trinh, A.T., Williams, L.M. and Tibbetts, R.S. (2007) Coregulated ATM and casein kinase sites modulate CREB-coactivator interactions in response to DNA damage. J. Biol. Chem. 282, 6283–6291.PubMedCrossRefGoogle Scholar
  60. Shemarova, I.V. (2005) [cAMP-PKA signal pathway in the lower eukaryotes]. Tsitologiia 47, 296–310.PubMedGoogle Scholar
  61. Waeber, G., Meyer, T.E., LeSieur, M., Hermann, H.L., Gerard, N. and Habener, J.F. (1991) Developmental stage-specific expression of cyclic adenosine 3’,5’-monophophate response element-binding protein CREB during spermatogenesis involves alternative exon splicing. Mol. Endocrinol. 5, 1418–1430.PubMedCrossRefGoogle Scholar
  62. Walker, W.H., Girardet, C. and Habener, J.F. (1996) Alternative exon splicing controls a translational switch from activator to repressor isoforms of transcription factor CREB during spermatogenesis. J. Biol. Chem. 271, 20145–21050.PubMedCrossRefGoogle Scholar
  63. Warburton, E.C., Glover, C.P., Massey, P.V., Wan, H., Johnson, B., Bienemann, A., Deuschle, U., Kew, J.N., Aggleton, J.P., Bashir, Z.I., Uney, J. and Brown, M.W. (2005) cAMP responsive element-binding protein phosphorylation is necessary for perihinal long-term potentiation and recognition memory. J. Neurosci. 25, 6296–6303.PubMedCrossRefGoogle Scholar
  64. Wolfer, D.P., Muller, U., Stagliar, M. and Lipp, H.P. (1997) Assessing the effects of the 129/Sv genetic background on swimming navigation learning in transgenic mutants: a study using mice with a modified beta-amyloid precursor protein gene. Brain Res. 771, 1–13.PubMedCrossRefGoogle Scholar
  65. Yang, L., Lanier, E.R. and Kraig, E. (1997) Identification of a novel, spliced variant of CREB that is preferentially expressed in the thymus. J. Immunol. 158, 2522–2525.PubMedGoogle Scholar
  66. Yin, J.C. and Tully, T. (1996) CREB and the formation of long-term memory. Curr Opin Neurobiol 6, 264–268.PubMedCrossRefGoogle Scholar
  67. Yin, J.C., Del Vecchio, M., Zhou, H. and Tully, T. (1995a) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115.CrossRefGoogle Scholar
  68. Yin, J.C., Wallach, J.S., Wilder, E.L., Klingensmith, J., Dang, D., Perrimon, N., Zhou, H., Tully, T., Quinn, W.G. (1995b) A Drosophila CREB/CREM homolog encodes multiple isoforms, including a cyclic AMP-dependent protein kinase-responsive transcriptional activator and antagonist. Mol. Cell. Biol 15, 5123–5130.Google Scholar
  69. Yin, J.C., Wallach, J.S., Del Vecchio, M., Wilder, E.L., Zhou, H., Quinn, W.G. and Tully, T. (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58.PubMedCrossRefGoogle Scholar
  70. Zhang, J.J., Okutani, F., Inoue, S. and Kaba, H. (2003) Activation of the cyclic AMP response element-binding protein signaling pathway in the olfactory bulb is required for the acquisition of olfactory aversive learning in young rats. Neuroscience 117, 707–713.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Thomas C. TubonJr.
  • Jerry C.P. Yin

There are no affiliations available

Personalised recommendations