Transcriptional Mechanisms Underlying the Mammalian Circadian Clock

  • Hai-Ying Mary Cheng
  • Karl Obrietan


The mammalian ‘master’ pacemaker is seated in the suprachiasmatic nuclei (SCN), a bilateral hypothalamic structure above the optic chiasm that is a heterogeneous conglomerate of ~ 20,000 neurons. Within the nuclei of SCN cells lies the molecular basis of circadian timekeeping: clock proteins that form interlocking transcriptional feedback loops, and that drive and sustain the rhythmic expression of their cognate genes as well as other clock-controlled genes (ccg). In addition to the SCN, this intracellular molecular clock is a common element in the many oscillating tissues of the central nervous system (CNS) and periphery that form the clock hierarchy. In this review we discuss the nature of themolecular clock,the neurotransmitter systems that actuate clock entrainment, and the intracellular signaling events leading to activation of transcriptional programs.


Circadian Clock cAMP Response Element Binding Suprachiasmatic Nucleus Photic Stimulation Clock Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamson, E.E. and Moore, R.Y. (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 916, 172–191.PubMedCrossRefGoogle Scholar
  2. Agostino, P.V., Ferreyra, G.A., Murad, A.D., Watanabe, Y. and Golombek, D.A. (2004) Diurnal, circadian and photic regulation of calcium/calmodulin kinase II and neuronal nitric oxide synthase in the hamster suprachiasmatic nuclei. Neurochem. Int. 44, 617–625.PubMedCrossRefGoogle Scholar
  3. Akashi, M. and Takumi, T. (2005) The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat. Struct. Mol. Biol. 12, 441–448.PubMedCrossRefGoogle Scholar
  4. Akashi, M., Tsuchiya, Y., Yoshino, T. and Nishida, E. (2002) Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol. Cell. Biol. 22, 1693–1703.PubMedCrossRefGoogle Scholar
  5. Akiyama, M., Minami, Y., Nakajima, T., Moriya, T. and Shibata, S. (2001) Calcium and pituitary adenylate cyclase-activating polypeptide induced expression of circadian clock gene mPer1 in the mouse cerebellar granule cell culture. J. Neurochem. 78, 499–508.PubMedCrossRefGoogle Scholar
  6. Arimura, A., Somogyvari-Vigh, A., Miyata, A., Mizuno, K., Coy, D.H. and Kitada, C. (1991) Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 129, 2787–2789.PubMedCrossRefGoogle Scholar
  7. Arthur, J.S. and Cohen, P. (2000) MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Lett. 482, 44–48.PubMedCrossRefGoogle Scholar
  8. Arthur, J.S., Fong, A.L., Dwyer, J.M., Davare, M., Reese, E., Obrietan, K. and Impey, S. (2004) Mitogen- and stress-activated protein kinase 1 mediates cAMP response element-binding protein phosphorylation and activation by neurotrophins. J. Neurosci. 24, 4324–4332.PubMedCrossRefGoogle Scholar
  9. Bae, K., Jin, X., Maywood, E.S., Hastings, M.H., Reppert, S.M. and Weaver, D.R. (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30, 525–536.PubMedCrossRefGoogle Scholar
  10. Barrie, A.P., Clohessy, A.M., Buensucso, C.S., Rogers, M.V. and Allen, J.M. (1997) Pituitary adenylyl cyclase-activating peptide stimulates extracellular signal-regulated kinase 1 or 2 (ERK1/2) activity in a Ras-independent, mitogen-activated protein Kinase/ERK kinase 1 or 2-dependent manner in PC12 cells. J. Biol. Chem. 272, 19666–19671.PubMedCrossRefGoogle Scholar
  11. Bergstrom, A.L., Hannibal, J., Hindersson, P. and Fahrenkrug, J. (2003) Light-induced phase shift in the Syrian hamster (Mesocricetus auratus) is attenuated by the PACAP receptor antagonist PACAP6-38 or PACAP immunoneutralization. Eur. J. Neurosci. 18, 2552–2562.PubMedCrossRefGoogle Scholar
  12. Bunger, M.K., Wilsbacher, L.D., Moran, S.M., Clendenin, C., Radcliffe, L.A., Hogenesch, J.B., Simon, M.C., Takahashi, J.S. and Bradfield, C.A. (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017.PubMedCrossRefGoogle Scholar
  13. Butcher, G.Q., Dziema, H., Collamore, M., Burgoon, P.W. and Obrietan, K. (2002) The p42/p44 mitogen-activated protein kinase pathway couples photic input to circadian clock entrainment. J. Biol. Chem. 277, 29519–29525.PubMedCrossRefGoogle Scholar
  14. Butcher, G.Q., Lee, B., Cheng, H.Y. and Obrietan, K. (2005) Light stimulates MSK1 activation in the suprachiasmatic nucleus via a PACAP-ERK/MAP kinase-dependent mechanism. J. Neurosci. 25, 5305–5313.PubMedCrossRefGoogle Scholar
  15. Butcher, G.Q., Lee, B., Hsieh, F. and Obrietan K. (2004) Light- and clock-dependent regulation of ribosomal S6 kinase activity in the suprachiasmatic nucleus. Eur. J. Neurosci. 19, 907–915.Google Scholar
  16. Cermakian, N., Monaco, L., Pando, M.P., Dierich, A. and Sassone-Corsi, P. (2001) Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene. EMBO J. 20, 3967–3974.PubMedCrossRefGoogle Scholar
  17. Chen, D., Buchanan, G.F., Ding, J.M., Hannibal, J. and Gillette, M.U. (1999) Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc. Natl. Acad. Sci. USA 96, 13468–13473.PubMedCrossRefGoogle Scholar
  18. Chen, R.H., Sarnecki, C. and Blenis, J. (1992) Nuclear localization and regulation of ERK- and RSK-encoded protein kinases. Mol. Cell. Biol. 12, 915–927.PubMedGoogle Scholar
  19. Cheng, H.Y. and Obrietan, K. (2006) Dexras1: shaping the responsiveness of the circadian clock. Semin. Cell. Dev. Biol. 17, 345–351.PubMedCrossRefGoogle Scholar
  20. Cheng, H.Y., Obrietan, K., Cain, S.W., Lee, B.Y., Agostino, P.V., Joza, N.A., Harrington, M.E., Ralph, M.R. and Penninger, J.M. (2004) Dexras1 potentiates photic and suppresses nonphotic responses of the circadian clock. Neuron 43, 715–728.PubMedCrossRefGoogle Scholar
  21. Cismowski, M.J., Ma, C., Ribas, C., Xie, X., Spruyt, M., Lizano, J.S., Lanier, S.M. and Duzic, E. (2000) Activation of heterotrimeric G-protein signaling by a ras-related protein. Implications for signal transduction. J. Biol. Chem. 275, 23421–23424.PubMedCrossRefGoogle Scholar
  22. Cismowski, M.J., Takesono, A., Ma, C., Lizano, J.S., Xie, X., Fuernkranz, H., Lanier, S.M., and Duzic, E. (1999) Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling. Nat. Biotechnol. 17, 878–883.PubMedCrossRefGoogle Scholar
  23. Colwell, C.S. (2001) NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: Gating by the circadian system. Eur. J. Neurosci. 13, 1420–1428.PubMedCrossRefGoogle Scholar
  24. Colwell, C.S. and Menaker, M. (1992) NMDA as well as non-NMDA receptor antagonists can prevent the phase shifting effects of light on the circadian system of the golden hamster. J. Biol. Rhythms 7, 125–136.PubMedCrossRefGoogle Scholar
  25. Colwell, C.S., Michel, S., Itri, J., Rodriguez, W., Tam, J., Lelievre, V., Hu, Z. and Waschek, J.A. (2004) Selective deficits in the circadian light response in mice lacking PACAP. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1194–R1201.PubMedGoogle Scholar
  26. Crews, C.M., Alessandrini, A. and Erikson, R.L. (1992) The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258, 478–480.PubMedCrossRefGoogle Scholar
  27. Deak, M., Clifton, A.D., Lucocq, L.M. and Alessi, D.R. (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 4426–4441.PubMedCrossRefGoogle Scholar
  28. Debruyne, J.P., Noton, E., Lambert, C.M., Maywood, E.S., Weaver, D.R. and Reppert, S.M. (2006) A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 50, 465–477.PubMedCrossRefGoogle Scholar
  29. Ding, J.M., Buchanan, G.F., Tischkau, S.A., Chen, D., Kuriashkina, L., Faiman, L.E., Alster, J.M., McPherson, P.S., Campbell, K.P., and Gillette, M.U. (1998) A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394, 381–384.PubMedCrossRefGoogle Scholar
  30. Ding, J.M., Chen, D., Weber, E.T., Faiman, L.E., Rea, M.A. and Gillette, M.U. (1994) Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266, 1713–1717.PubMedCrossRefGoogle Scholar
  31. Ding, J.M., Faiman, L.E., Hurst, W.J., Kuriashkina, L.R., and Gillette, M.U. (1997) Resetting the biological clock: mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J. Neurosci. 17, 667–675.PubMedGoogle Scholar
  32. Dioum, E.M., Rutter, J., Tuckerman, J.R., Gonzalez, G., Gilles-Gonzalez, M.A. and McKnight, S.L. (2002) NPAS2: a gas-responsive transcription factor. Science 298, 2385–2387.PubMedCrossRefGoogle Scholar
  33. Drolet, D.W., Scully, K.M., Simmons, D.M., Wegner, M., Chu, K.T., Swanson, L.W. and Rosenfeld, M.G. (1991) TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis, defines a new class of leucine zipper proteins. Genes & Dev. 5, 1739–1753.CrossRefGoogle Scholar
  34. Dziema, H., Oatis, B., Butcher, G.Q., Yates, R., Hoyt, K.R. and Obrietan, K. (2003) The ERK/MAP kinase pathway couples light to immediate-early gene expression in the suprachiasmatic nucleus. Eur. J. Neurosci. 17, 1617–1627.PubMedCrossRefGoogle Scholar
  35. Dziema, H. and Obrietan, K. (2002) PACAP potentiates L-type calcium channel conductance in suprachiasmatic nucleus neurons by activating the MAPK pathway. J. Neurophysiol. 88, 1374–1386.PubMedGoogle Scholar
  36. Edelstein, K. and Amir, S. (1999) The role of the intergeniculate leaflet in entrainment of circadian rhythms to a skeleton photoperiod. J. Neurosci. 19, 372–380.PubMedGoogle Scholar
  37. Erikson, E. and Maller, J.L. (1985) A protein kinase from Xenopus eggs specific for ribosomal protein S6. Proc. Natl. Acad. Sci. USA 82 , 742–746.PubMedCrossRefGoogle Scholar
  38. Etchegaray, J.P., Lee, C., Wade, P.A. and Reppert, S.M. (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177–182.PubMedCrossRefGoogle Scholar
  39. Fang, M., Jaffrey, S.R., Sawa, A., Ye, K., Luo, X. and Snyder, S.H. (2000) Dexras1: a G protein specifically coupled to neuronal nitric oxid synthase via CAPON. Neuron 28, 183–193.PubMedCrossRefGoogle Scholar
  40. Ferreyra, G.A. and Golombek, D.A. (2001) Rhythmicity of the cGMP-related signal transduction pathway in the mammalian circadian system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1348-R1355.PubMedGoogle Scholar
  41. Fiscus, R.R. (2002) Involvement of cyclic GMP and protein kinase G in the regulation of apoptosis and survival in neural cells. Neurosignals 11, 175–190.PubMedCrossRefGoogle Scholar
  42. Frodin, M. and Gammeltoft, S. (1999) Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol. Cell. Endocrinol. 151, 65–77.PubMedCrossRefGoogle Scholar
  43. Fukushima, T., Shimazoe, T., Shibata, S., Watanabe, A., Ono, M., Hamada, T. and Watanabe, S. (1997) The involvement of calmodulin and Ca2+/calmodulin-dependent protein kinase II in the circadian rhythms controlled by the suprachiasmatic nucleus. Neurosci. Lett. 227, 45–48.PubMedCrossRefGoogle Scholar
  44. Gau, D., Lemberger, T., von Gall, C., Kretz, O., Le Minh, N., Gass, P., Schmid, W., Schibler, U., Korf, H.W. and Schutz, G. (2002) Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34, 245–253.PubMedCrossRefGoogle Scholar
  45. Gekakis, N., Staknis, D., Nguyen, H.B., Davis, F.C., Wilsbacher, L.D., King, D.P., Takahashi, J.S. and Weitz, C.J. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569.PubMedCrossRefGoogle Scholar
  46. Ghatei, M.A., Takahashi, K., Suzuki, Y., Gardiner, J., Jones, P.M. and Bloom, S.R. (1993) Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J. Endocrinol. 136, 159–166.PubMedCrossRefGoogle Scholar
  47. Gille, H., Kortenjann, M., Thomae, O., Moomaw, C., Slaughter, C., Cobb, M.H. and Shaw, P.E. (1995) ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14, 951–962.PubMedGoogle Scholar
  48. Ginty, D.D., Kornhauser, J.M., Thompson, M.A., Bading, H., Mayo, K.E., Takahashi, J.S. and Greenberg, M.E. (1993) Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260, 238–241.PubMedCrossRefGoogle Scholar
  49. Golombek, D.A., Agostino, P.V., Plano, S.A., Ferreyra, G.A. (2004) Signaling in the mammalian circadian clock: the NO/cGMP pathway. Neurochem. Int. 45, 929–936.PubMedCrossRefGoogle Scholar
  50. Golombek, D.A. and Ralph, M.R. (1994) KN-62, an inhibitor of Ca2+/calmodulin kinase II, attenuates circadian responses to light. Neuroreport 5, 1638–1640.PubMedCrossRefGoogle Scholar
  51. Graham, T.E., Prossnitz, E.R., and Dorin, R.I. (2002) Dexras1/AGS-1 inhibits signal transduction from the Gi-coupled formyl peptide receptor to Erk-1/2 MAP kinases. J. Biol. Chem. 277, 10876–10882.PubMedCrossRefGoogle Scholar
  52. Griffin, E.A. Jr., Staknis, D. and Weitz, C.J. (1999) Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286, 768–771.PubMedCrossRefGoogle Scholar
  53. Haak, L.L. (1999) Metabotropic glutamate receptor modulation of glutamate responses in the suprachiasmatic nucleus. J. Neurophysiol. 81, 1308–1317.PubMedGoogle Scholar
  54. Hamaguchi, H., Fujimoto, K., Kawamoto, T., Noshiro, M., Maemura, K., Takeda, N., Nagai, R., Furukawa, M., Honma, S., Honma, K., Kurihara, H. and Kato, Y. (2004) Expression of the gene for Dec2, a basic helix-loop-helix transcription factor, is regulated by a molecular clock system. Biochem. J. 382, 43–50.PubMedCrossRefGoogle Scholar
  55. Hannibal, J. (2002) Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res. 309, 73–88.PubMedCrossRefGoogle Scholar
  56. Hannibal, J., Ding, J.M., Chen, D., Fahrenkrug, J., Larsen, P.J., Gillette, M.U. and Mikkelsen, J.D. (1997) Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J. Neurosci. 17, 2637–2644.PubMedGoogle Scholar
  57. Hannibal, J., Ding, J.M., Chen, D., Fahrenkrug, J., Larsen, P.J., Gillette, M.U. and Mikkelsen, J.D. (1998) Pituitary adenylate cyclase activating peptide (PACAP) in the retinohypothalamic tract: a daytime regulator of the biological clock. Ann. N. Y. Acad. Sci. 865, 197–206.PubMedCrossRefGoogle Scholar
  58. Hannibal, J., Hindersson, P., Knudsen, S.M., Georg, B. and Fahrenkrug, J. (2002) The Photopigment Melanopsin Is Exclusively Present in Pituitary Adenylate Cyclase-Activating Polypeptide-Containing Retinal Ganglion Cells of the Retinohypothalamic Tract. J. Neurosci. 22, RC191.PubMedGoogle Scholar
  59. Hannibal, J., Jamen, F., Nielsen, H.S., Journot, L., Brabet, P. and Fahrenkrug, J. (2001) Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor. J. Neurosci. 21, 4883–4890.PubMedGoogle Scholar
  60. Hannibal, J., Mikkelsen, J.D., Clausen, H., Holst, J.J., Wulff, B.S. and Fahrenkrug, J. (1995) Gene expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat hypothalamus. Regul. Pept. 55, 133–148.PubMedCrossRefGoogle Scholar
  61. Hannibal, J., Moller, M., Ottersen, O.P. and Fahrenkrug, J. (2000) PACAP and glutamate are co-stored in the retinohypothalamic tract. J. Comp. Neurol. 418, 147–155.PubMedCrossRefGoogle Scholar
  62. Harmar, A.J., Arimura, A., Gozes, I., Journot, L., Laburthe, M., Pisegna, J.R., Rawlings, S.R., Robbrecht, P., Said, S.I., Sreedharan, S.P., Wank, S.A. and Waschek, J.A. (1998) International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol. Rev. 50, 265–270.PubMedGoogle Scholar
  63. Harrington, M.E., Hoque, S., Hall, A., Golombek, D. and Biello, S. (1999) Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light. J. Neurosci. 19, 6637–6642.PubMedGoogle Scholar
  64. Hinds, H.L., Tonegawa, S. and Malinow, R. (1998) CA1 long-term potentiation is diminished but present in hippocampal slices from alpha-CaMKII mutant mice. Learn. Mem. 5, 344–354.PubMedGoogle Scholar
  65. Hogenesch, J.B., Gu, Y.Z., Jain, S. and Bradfield, C.A. (1998) The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 95, 547–549.CrossRefGoogle Scholar
  66. Honma, S., Kawamoto, T., Takagi, Y., Fujimoto, K., Sato, F., Noshiro, M., Kato, Y. and Honma, K. (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419, 841–844.PubMedCrossRefGoogle Scholar
  67. Honrado, G.I., Johnson, R.S., Golombek, D.A., Spiegelman, B.M., Papaioannou, V.E. and Ralph, M.R. (1996) The circadian system of c-fos deficient mice. J. Comp. Physiol. 178, 563–570.CrossRefGoogle Scholar
  68. Hsu, D.S., Zhao, X., Zhao, S., Kazantsev, A., Wang, R.P., Todo, T., Wei, Y.F. and Sancar, A. (1996) Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry 35, 13871–13877.PubMedCrossRefGoogle Scholar
  69. Hudmon, A. and Schulman, H. (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu. Rev. Biochem. 71, 473–510.PubMedCrossRefGoogle Scholar
  70. Inaba, T., Roberts, W.M., Shapiro, L.H., Jolly, K.W., Raimondi, S.C., Smith, S.D. and Look, A.T. (1992) Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science 257, 531–534.PubMedCrossRefGoogle Scholar
  71. Janik, D., Mikkelsen, J.D. and Mrosovsky, N. (1995) Cellular colocalization of Fos and neuropeptide Y in the intergeniculate leaflet after nonphotic phase-shifting events. Brain Res. 698, 137–145.PubMedCrossRefGoogle Scholar
  72. Johannessen, M., Delghandi, M.P. and Moens, U. (2004) What turns CREB on? Cell Signal. 16, 1211–1227.PubMedCrossRefGoogle Scholar
  73. Karin, M., Liu, Z. and Zandi, E. (1997) AP-1 function and regulation. Curr. Opin. Cell. Biol. 9, 240–246.PubMedCrossRefGoogle Scholar
  74. Kawaguchi, C., Tanaka, K., Isojima, Y., Shintani, N., Hashimoto, H., Baba, A. and Nagai, K. (2003) Changes in light-induced phase shift of circadian rhythm in mice lacking PACAP. Biochem. Biophys. Res. Commun. 310, 169–175.PubMedCrossRefGoogle Scholar
  75. Kawamoto, T., Noshiro, M., Sato, F., Maemura, K., Takeda, N., Nagai, R., Iwata, T., Fujimoto, K., Furukawa, M., Miyazaki, K., Honma, S., Honma, K. and Kato, Y. (2004) A novel autofeedback loop of Dec1 transcription involved in circadian rhythm regulation. Biochem. Biophys. Res. Commun. 313, 117–124.CrossRefGoogle Scholar
  76. King, D.P., Zhao, Y., Sangoram, A.M., Wilsbacher, L.D., Tanaka, M., Antoch, M.P., Steeves, T.D., Vitaterna, M.H., Kornhauser, J.M., Lowrey, P.L., Turek, F.W. and Takahashi, J.S. (1997) Positional cloning of the mouse circadian clock gene. Cell 89, 641–653.PubMedCrossRefGoogle Scholar
  77. Kornhauser, J.M., Nelson, D.E., Mayo, K.E. and Takahashi, J.S. (1990) Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron 5, 127–134.PubMedCrossRefGoogle Scholar
  78. Kornhauser, J.M., Nelson, D.E., Mayo, K.E. and Takahashi, J.S. (1992) Regulation of jun-B messenger RNA and AP-1 activity by light and a circadian clock. Science 255, 1581–1584.PubMedCrossRefGoogle Scholar
  79. Kriegsfeld, L.J., M.J., Demas, G.E., Lee, S.E. Jr., Dawson, T.M., Dawson, V.L., and Nelson, R.J. (1999) Circadian locomotor analysis of male mice lacking the gene for neuronal nitric oxide synthase (nNOS-/-) J. Biol. Rhythms 14, 20–27.PubMedCrossRefGoogle Scholar
  80. Lin, J.T., Kornhauser, J.M., Singh, N.P., Mayo, K.E. and Takahashi, J.S. (1997) Visual sensitivities of nur77 (NGFI-B) and zif268 (NGFI-A) induction in the suprachiasmatic nucleus are dissociated from c-fos induction and behavioral phase-shifting responses. Brain Res. Mol. Brain Res. 46, 303–310.PubMedCrossRefGoogle Scholar
  81. Lopez-Molina, L., Conquet, F., Dubois-Dauphin, M. and Schibler, U. (1997) The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J. 16, 6762–6771.PubMedCrossRefGoogle Scholar
  82. Lowrey, P.L., Shimomura, K., Antoch, M.P., Yamazaki, S., Zemenides, P.D., Ralph, M.R., Menaker, M. and Takahashi, J.S. (2000) Positional Syntenic Cloning and Functional Characterization of the Mammalian Circadian Mutation tau. Science 288, 483–492.PubMedCrossRefGoogle Scholar
  83. Low-Zeddies, S.S. and Takahashi, J.S. (2001) Chimera analysis of the Clock mutation in mice shows that complex cellular integration determines circadian behavior. Cell 105, 25–42.PubMedCrossRefGoogle Scholar
  84. Malenka, R.C., Kauer, J.A., Perkel, D.J., Mauk, M.D., Kelly, P.T., Nicoll, R.A. and Waxham, M.N. (1989) An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 340, 554–557.PubMedCrossRefGoogle Scholar
  85. Martinek, S., Inonog, S., Manoukian, A.S. and Young, M.W. (2001) A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105, 769–779.PubMedCrossRefGoogle Scholar
  86. Mathur, A., Golombek, D.A. and Ralph, M.R. (1996) cGMP-dependent protein kinase inhibitors block light-induced phase advances of circadian rhythms in vivo. Am. J. Physiol. 270, R1031-R1036.PubMedGoogle Scholar
  87. Michel, S., Itri, J. and Colwell, C.S. (2002) Excitatory mechanisms in the suprachiasmatic nucleus: the role of AMPA/KA glutamate receptors. J. Neurophysiol. 88, 817–828.PubMedGoogle Scholar
  88. Mintz, E.M., Marvel, C.L., Gillespie, C.F., Price, K.M. and Albers, H.E. (1999) Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. J. Neurosci. 19, 5124–5130.PubMedGoogle Scholar
  89. Mitsui, S., Yamaguchi, S., Matsuo, T., Ishida, Y. and Okamura, H. (2001) Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 15, 995–1006.PubMedCrossRefGoogle Scholar
  90. Miyata, A., Arimura, A., Dahl, R.R., Minamino, N., Uehara, A., Jiang, L., Culler, M.D. and Coy, D.H. (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164, 567–574.PubMedCrossRefGoogle Scholar
  91. Miyata, A., Jiang, L., Dahl, R.D., Kitada, C., Kubo, K., Fujino, M., Minamino, N. and Arimura, A. (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem. Biophys. Res. Commun. 170, 643–648.PubMedCrossRefGoogle Scholar
  92. Moore, R.Y. (1996) Entrainment pathways and the functional organization of the circadian system. Prog. Brain Res. 111, 103–119.PubMedGoogle Scholar
  93. Morin, L.P. and Blanchard, J.H. (2001) Neuromodulator content of hamster intergeniculate leaflet neurons and their projection to the suprachiasmatic nucleus or visual midbrain. J. Comp. Neurol. 437, 79–90.PubMedCrossRefGoogle Scholar
  94. Morris, M.E., Viswanathan, N., Kuhlman, S., Davis, F.C. and Weitz, C.J. (1998) A screen for genes induced in the suprachiasmatic nucleus by light. Science 279, 1544–1547.PubMedCrossRefGoogle Scholar
  95. Mueller, C.R., Maire, P. and Schibler, U. (1990) DBP, a liver-enriched transcriptional act-ivator, is expressed late in ontogeny and its tissue specificity is determined posttranscriptionally. Cell 61, 279–291.PubMedCrossRefGoogle Scholar
  96. Nielsen, H.S., Hannibal, J., Knudsen, S.M. and Fahrenkrug, J. (2001) Pituitary adenylate cyclase-activating polypeptide induces period1 and period2 gene expression in the rat suprachiasmatic nucleus during late night. Neuroscience 103, 433–441.PubMedCrossRefGoogle Scholar
  97. Obrietan, K., Impey, S., Smith, D., Athos, J. and Storm, D.R. (1999) Circadian regulation of cAMP response element-mediated gene expression in the suprachiasmatic nuclei. J. Biol. Chem. 274, 17748–17756.PubMedCrossRefGoogle Scholar
  98. Obrietan, K., Impey, S. and Storm, D.R. (1998) Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat. Neurosci. 1, 693–700.PubMedCrossRefGoogle Scholar
  99. Otmakhov, N., Griffith, L.C. and Lisman, J.E. (1997) Postsynaptic inhibitors of calcium/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. J. Neurosci. 17, 5357–5365.PubMedGoogle Scholar
  100. Pennartz, C.M., Hamstra, R. and Geurtsen, A.M. (2001) Enhanced NMDA receptor activity in retinal inputs to the rat suprachiasmatic nucleus during the subjective night. J. Physiol. 532, 181–194.PubMedCrossRefGoogle Scholar
  101. Pickard, G.E., Ralph, M.R. and Menaker, M. (1987) The intergeniculate leaflet partially mediates effects of light on circadian rhythms. J. Biol. Rhythms 2, 35–56.PubMedCrossRefGoogle Scholar
  102. Pierrat, B., Correia, J.S., Mary, J.L., Tomas-Zuber, M. and Lesslauer, W. (1998) RSK-B, a novel ribosomal S6 kinase family member, is a CREB kinase under dominant control of p38alpha mitogen-activated protein kinase (p38alphaMAPK). J. Biol. Chem. 273, 29661–29671.PubMedCrossRefGoogle Scholar
  103. Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D., Albrecht, U. and Schibler, U. (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260.PubMedCrossRefGoogle Scholar
  104. Reick, M., Garcia, J.A., Dudley, C. and McKnight, S.L. (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293, 506–509.PubMedCrossRefGoogle Scholar
  105. Ripperger, J.A., Shearman, L.P., Reppert, S.M. and Schibler, U. (2000) CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev. 14, 679–689.PubMedGoogle Scholar
  106. Roberto, M. and Brunelli, M. (2000) PACAP-38 enhances excitatory synaptic transmission in the rat hippocampal CA1 region. Learn Mem. 7, 303–311.PubMedCrossRefGoogle Scholar
  107. Romano, C., Sesma, M.A., McDonald, C.T., O’Malley, K., Van den Pol, A.N. and Olney, J.W. (1995) Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J. Comp. Neurol. 355, 455–469.PubMedCrossRefGoogle Scholar
  108. Shearman, L.P., Jin, X., Lee, C., Reppert, S.M. and Weaver, D.R. (2000) Targeted disruption of the mPer3 gene: subtle effects on circadian clock function. Mol. Cell. Biol. 20, 6269–6275.PubMedCrossRefGoogle Scholar
  109. Shen, M., Kawamoto, T., Teramoto, M., Makihira, S., Fujimoto, K., Yan, W., Noshiro, M. and Kato, Y. (2001) Induction of basic helix-loop-helix protein DEC1 (BHLHB2)/Stra13/Sharp2 in response to the cyclic adenosine monophosphate pathway. Eur. J. Cell. Biol. 80, 329–334.PubMedCrossRefGoogle Scholar
  110. Shibata, S., Watanabe, A., Hamada, T., Ono, M. and Watanabe, S. (1994) N-methyl-D-aspartate induces phase shifts in circadian rhythm of neuronal activity of rat SCN in vitro. Am. J. Physiol. 267, R360-R364.PubMedGoogle Scholar
  111. Soderling, T. R. (1996) Structure and regulation of calcium/calmodulin-dependent protein kinases II and IV. Biochim. Biophys. Acta 1297, 131–138.PubMedGoogle Scholar
  112. Soderling, T. R., Chang, B. and Brickey, D. (2001) Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 276, 3719–3722.PubMedCrossRefGoogle Scholar
  113. Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P.H. and Journot, L. (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365, 170–175.PubMedCrossRefGoogle Scholar
  114. Sun, P., Enslen, H., Myung, P.S. and Maurer, R.A. (1994) Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8, 2527–2539.PubMedCrossRefGoogle Scholar
  115. Sun, P. and Maurer, R.A. (1995) An inactivating point mutation demonstrates that interaction of cAMP response element binding protein (CREB) with the CREB binding protein is not sufficient for transcriptional activation. J. Biol. Chem. 270, 7041–7044.PubMedCrossRefGoogle Scholar
  116. Takahashi, H., Umeda, N., Tsutsumi, Y., Fukumura, R., Ohkaze, H., Sujino, M., van der Horst, G., Yasui, A., Inouye, S.T., Fujimori, A., Ohhata, T., Araki, R., and Abe, M. (2003) Mouse dexamethasone-induced RAS protein 1 gene is expressed in a circadian rhythmic manner in the suprachiasmatic nucleus. Brain Res. Mol. Brain Res. 110, 1–6.PubMedCrossRefGoogle Scholar
  117. Tanaka, K., Shibuya, I., Harayama, N., Nomura, M., Kabashima, N., Ueta, Y. and Yamashita, H. (1997) Pituitary adenylate cyclase-activating polypeptide potentiation of Ca2+ entry via protein kinase C and A pathways in melanotrophs of the pituitary pars intermedia of rats. Endocrinology. 138, 4086–4095.PubMedCrossRefGoogle Scholar
  118. Tanaka, K., Shibuya, I., Nagamoto, T., Yamashita, H. and Kanno, T. (1996) Pituitary adenylate cyclase-activating polypeptide causes rapid Ca2+ release from intracellular stores and long lasting Ca2+ influx mediated by Na+ influx-dependent membrane depolarization in bovine adrenal chromaffin cells. Endocrinology. 137, 956–966.PubMedCrossRefGoogle Scholar
  119. Taylor, B.L. and Zhulin, I.B. (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63, 479–506.PubMedGoogle Scholar
  120. Teramoto, M., Nakamasu, K., Noshiro, M., Matsuda, Y., Gotoh, O., Shen, M., Tsutsumi, S., Kawamoto, T., Iwamoto, Y. and Kato, Y. (2001) Gene structure and chromosomal location of a human bHLH transcriptional factor DEC1 x Stra13 x SHARP-2/BHLHB2. J. Biochem (Tokyo) 129, 391–396.Google Scholar
  121. Thankachan, S. and Rusak, B. (2005) Juxtacellular recording/labeling analysis of physiological and anatomical characteristics of rat intergeniculate leaflet neurons. J. Neurosci. 25, 9195–9204.PubMedCrossRefGoogle Scholar
  122. Tischkau, S.A., Mitchell, J.W., Tyan, S.H., Buchanan, G.F. and Gillette, M.U. (2003) Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J. Biol. Chem. 278, 718–723.PubMedCrossRefGoogle Scholar
  123. Tischkau, S.A., Weber, E.T., Abbott, S.M., Mitchell, J.W. and Gillette, M.U. (2003) Circadian clock-controlled regulation of cGMP-protein kinase G in the nocturnal domain. J. Neurosci. 23, 7543–7550.PubMedGoogle Scholar
  124. Travnickova-Bendova, Z., Cermakian, N., Reppert, S.M. and Sassone-Corsi, P. (2002) Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. USA 99, 7728–7733.PubMedCrossRefGoogle Scholar
  125. Van den Pol, A.N., Kogelman, L., Ghosh, P., Liljelund, P. and Blackstone, C. (1994) Developmental regulation of the hypothalamic metabotropic glutamate receptor mGluR1. J. Neurosci. 14, 3816–3834.PubMedGoogle Scholar
  126. Van der Horst, G.T., Muijtjens, M., Kobayashi, K., Takano, R., Kanno, S., Takao, M., de Wit, J., Verkerk, A., Eker, A.P., van Leenen, D., Buijs, R., Bootsma, D., Hoeijmakers, J.H. and Yasui, A. (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627–630.PubMedCrossRefGoogle Scholar
  127. Vitaterna, M.H., King, D.P., Chang, A.M., Kornhauser, J.M., Lowrey, P.L., McDonald, J.D., Dove, W.F., Pinto, L.H., Turek, F.W. and Takahashi, J.S. (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719–725.PubMedCrossRefGoogle Scholar
  128. Von Gall, C., Duffield, G.E., Hastings, M.H., Kopp, M.D., Dhghani, F., Korf, H.W. and Stehle, J.H. (1998) CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access. J. Neurosci. 18, 10389–10397.Google Scholar
  129. Vrang, N., Mrosovsky, N. and Mikkelsen, J.D. (2003) Afferent projections to the hamster intergeniculate leaflet demonstrated by retrograde and anterograde tracing. Brain Res. Bull. 59, 267–288.PubMedCrossRefGoogle Scholar
  130. Weber, E.T., Gannon, R.L. and Rea, M.A. (1995) cGMP-dependent protein kinase inhibitor blocks light-induced phase advances of circadian rhythms in vivo. Neurosci. Lett. 197, 227–230.PubMedCrossRefGoogle Scholar
  131. Wickland, C. and Turek, F.W. (1994) Lesions of the thalamic intergeniculate leaflet block activity-induced phase shifts in the circadian activity rhythm of the golden hamster. Brain Res. 660, 293–300.PubMedCrossRefGoogle Scholar
  132. Wollnik, F., Brysch, W., Uhlmann, E., Gillardon, F., Bravo, R., Zimmermann, M., Schlingensiepen, K.H. and Herdegen, T. (1995) Block of c-Fos and JunB expression by antisense oligonucleotides inhibits light-induced phase shifts of the mammalian circadian clock. Eur. J. Neurosci. 7, 388–393.PubMedCrossRefGoogle Scholar
  133. Yamaguchi, S., Mitsui, S., Yan, L., Yagita, K., Miyake, S. and Okamura, H. (2000) Role of DBP in the circadian oscillatory mechanism. Mol. Cell. Biol. 20, 4773–4781.PubMedCrossRefGoogle Scholar
  134. Yin, L., Wang, J., Klein, P.S. and Lazar, M.A. (2006) Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 311, 1002–1005.PubMedCrossRefGoogle Scholar
  135. Yokota, S., Yamamoto, M., Moriya, T., Akiyama, M., Fukunaga, K., Miyamoto, E. and Shibata, S. (2001) Involvement of calcium-calmodulin protein kinase but not mitogen-activated protein kinase in light-induced phase delays and Per gene expression in the suprachiasmatic nucleus of the hamster. J. Neurochem. 77, 618–627.PubMedCrossRefGoogle Scholar
  136. Yujnovsky, I., Hirayama, J.., Doi, M., Borrelli, E. and Sassone-Corsi, P. (2006) Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. Proc. Natl. Acad. Sci. USA. 103, 6386–6391.PubMedCrossRefGoogle Scholar
  137. Zheng, C.F. and Guan, K.L. (1993) Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. J. Biol. Chem. 268, 11435–11439.PubMedGoogle Scholar
  138. Zheng, B., Larkin, D.W., Albrecht, U., Sun, Z.S., Sage, M., Eichele, G., Lee, C.C. and Bradley, A. (1999) The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400, 169–173.PubMedCrossRefGoogle Scholar
  139. Zheng, B., Albrecht, U., Kaasik, K., Sage, M., Lu, W., Vaishnav, S., Li, Q., Sun, Z.S., Eichele, G., Bradley, A. and Lee, C.C. (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105, 683–694.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hai-Ying Mary Cheng
  • Karl Obrietan

There are no affiliations available

Personalised recommendations