Skip to main content

Not Just for Muscle Anymore: Activity and Calcium Regulation of MEF2-Dependent Transcription in Neuronal Survival and Differentiation

  • Chapter
Transcriptional Regulation by Neuronal Activity

Abstract

Post-mitotic neurons of the central nervous system express one or more MEF2 proteins from the time of cell-cycle exit through adulthood. Furthermore, it is now evident that MEF2 regulates diverse aspects of neuronal development including cell survival and synaptogenesis. MEF2 proteins are bifunctional transcriptional regulators, a property that arises from the signal-dependent association of MEF2 proteins with distinct chromatin modifying activities. The goal of this chapter is to provide an account of the various control mechanisms that MEF2 proteins are subjected to within the central nervous system, placing a specific emphasis on the contribution of activity- and calcium-dependent signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman, J. and Bayer, S. A. (1997) Development of the cerebellar system: in relation to its evolution, structure, and functions. CRC Press, Boca Raton.

    Google Scholar 

  • Andres, V., Cervera, M. and Mahdavi, V. (1995) Determination of the consensus binding site for MEF2 expressed in muscle and brain reveals tissue-specific sequence constraints. J. Biol. Chem. 270, 23246–23249.

    Article  PubMed  CAS  Google Scholar 

  • Aramburu, J., Rao, A. and Klee, C. B. (2000) Calcineurin: from structure to function. Curr. Top. Cell Regul. 36, 237–295.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, H. H. and Winter, B. (1998) Muscle differentiation: more complexity to the network of myogenic regulators. Curr. Opin. Genet. Dev. 8, 539–544.

    Article  PubMed  CAS  Google Scholar 

  • Barsyte-Lovejoy, D., Galanis, A., Clancy, A. and Sharrocks, A. D. (2004) ERK5 is targeted to myocyte enhancer factor 2A (MEF2A) through a MAPK docking motif. Biochem. J. 381, 693–699.

    Article  PubMed  CAS  Google Scholar 

  • Belfield, J. L., Whittaker, C., Cader, M. Z. and Chawla, S. (2006) Differential effects of Ca2+ and cAMP on transcription mediated by MEF2D and cAMP-response element-binding protein in hippocampal neurons. J. Biol. Chem. 281, 27724–27732.

    Article  PubMed  CAS  Google Scholar 

  • Benedito, A. B., Lehtinen, M., Massol, R., Lopes, U. G., Kirchhausen, T., Rao, A. and Bonni, A. (2005) The transcription factor NFAT3 mediates neuronal survival. J. Biol. Chem. 280, 2818–2825.

    Google Scholar 

  • Black, B. L., Ligon, K. L., Zhang, Y. and Olson, E. N. (1996) Cooperative transcriptional activation by the neurogenic basic helix-loop-helix protein MASH1 and members of the myocyte enhancer factor-2 (MEF2) family. J. Biol. Chem. 271, 26659–26663.

    Article  PubMed  CAS  Google Scholar 

  • Black, B. L. and Olson, E. N. (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14, 167–196.

    Article  PubMed  CAS  Google Scholar 

  • Bonhoeffer, T. and Yuste, R. (2002) Spine motility. Phenomenology, mechanisms, and function. Neuron 35, 1019–1027.

    CAS  Google Scholar 

  • Buonanno, A. and Fields, R. D. (1999) Gene regulation by patterned electrical activity during neural and skeletal muscle development. Curr. Opin. in Neurobio. 9, 110–120.

    Article  CAS  Google Scholar 

  • Butts, B. D., Linseman, D. A., Le, S. S., Laessig, T. A. and Heidenreich, K. A. (2003) Insulin-like growth factor-I suppresses degradation of the pro-survival transcription factor myocyte enhancer factor 2D (MEF2D) during neuronal apoptosis. Horm. Metab. Res. 35(11–12), 763–770.

    Google Scholar 

  • Cavanaugh, J. E. (2004) Role of extracellular signal regulated kinase 5 in neuronal survival. Eur. J. Biochem. 271, 2056–2059.

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh, J. E., Ham, J., Hetman, M., Poser, S., Yan, C. and Xia, Z. (2001) Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons. J. Neurosci. 21, 434–443.

    PubMed  CAS  Google Scholar 

  • Chang, S. H., Poser, S. and Xia, Z. (2004) A novel role for serum response factor in neuronal survival. J. Neurosci. 24, 2277–2285.

    Article  PubMed  CAS  Google Scholar 

  • Chawla, S., Vanhoutte, P., Arnold, F. J., Huang, C. L. and Bading, H. (2003) Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J. Neurochem. 85, 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, Z. H., Fu, A. K. and Ip, N. Y. (2006) Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases. Neuron 50, 13–18.

    Article  PubMed  CAS  Google Scholar 

  • Chin, E. R., Olson, E. N., Richardson, J. A., Yang, Q., Humphries, C., Shelton, J. M., Wu, H., Zhu, W., Bassel-Duby, R. and Williams, R. S. (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12, 2499–2509.

    PubMed  CAS  Google Scholar 

  • Chklovskii, D. B., Mel, B. W. and Svoboda, K. (2004) Cortical rewiring and information storage. Nature 431, 782–788.

    Article  PubMed  CAS  Google Scholar 

  • Chupreta, S., Holmstrom, S., Subramanian, L. and Iniguez-Lluhi, J. A. (2005) A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties. Mol. Cell. Biol. 25, 4272–4282.

    Google Scholar 

  • Cox, D. M., Du, M., Marback, M., Yang, E. C., Chan, J., Siu, K. W. and McDermott, J. C. (2003) Phosphorylation motifs regulating the stability and function of myocyte enhancer factor 2A. J. Biol. Chem. 278, 15297–15303.

    Google Scholar 

  • Cripps, R. M., Black, B. L., Zhao, B., Lien, C. L., Schulz, R. A. and Olson, E. N. (1998) The myogenic regulatory gene MEF2 is a direct target for transcriptional activation by Twist during Drosophila myogenesis. Genes Dev. 12, 422–434.

    PubMed  CAS  Google Scholar 

  • Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H. and Tsai, L. H. (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40, 471–483.

    Article  PubMed  CAS  Google Scholar 

  • Dhavan, R. and Tsai, L. H. (2001) A decade of CDK5. Nat. Rev. Mol. Cell Biol. 2, 749–759.

    Article  PubMed  CAS  Google Scholar 

  • Dichoso, D., Brodigan, T., Chwoe, K. Y., Lee, J. S., Llacer, R., Park, M., Corsi, A. K., Kostas, S. A., Fire, A., Ahnn, J. and Krause, M. (2000) The MADS-Box factor CeMEF2 is not essential for Caenorhabditis elegans myogenesis and development. Dev. Biol. 223, 431–440.

    Article  PubMed  CAS  Google Scholar 

  • Dodou, E., Sparrow, D. B., Mohun, T. and Treisman, R. (1995) MEF2 proteins, including MEF2A, are expressed in both muscle and non-muscle cells. Nucleic Acids Res. 23, 4267–4274.

    Article  PubMed  CAS  Google Scholar 

  • Dodou, E., Xu, S. M. and Black, B. L. (2003) MEF2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo. Mech. Dev. 120, 1021–1032.

    Article  PubMed  CAS  Google Scholar 

  • Finkbeiner, S. and Greenberg, M. E. (1996) Ca(2+)-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron 16, 233–236.

    Google Scholar 

  • Fischle, W., Dequiedt, F., Hendzel, M. J., Guenther, M. G., Lazar, M. A., Voelter, W. and Verdin, E. (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell 9, 45–57.

    Article  PubMed  CAS  Google Scholar 

  • Flavell, S. W., Cowan, C. W., Kim, T. K., Greer, P. L., Lin, Y., Paradis, S., Griffith, E. C., Hu, L. S., Chen, C. and Greenberg, M. E. (2006) Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008–1012.

    Article  PubMed  CAS  Google Scholar 

  • Gaudilliere, B., Shi, Y. and Bonni, A. (2002) RNA interference reveals a requirement for myocyte enhancer factor 2A in activity-dependent neuronal survival. J. Biol. Chem. 277, 46442–46446.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, A. and Greenberg, M. E. (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Gill, G. (2003) Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr. Opin. Genet. Dev. 13, 108–113.

    Article  PubMed  CAS  Google Scholar 

  • Gong, X., Tang, X., Wiedmann, M., Wang, X., Peng, J., Zheng, D., Blair, L. A., Marshall, J. and Mao, Z. (2003) Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38, 33–46.

    Article  PubMed  CAS  Google Scholar 

  • Gregoire, S., Tremblay, A. M., Xiao, L., Yang, Q., Ma, K., Nie, J., Mao, Z., Wu, Z., Giguere, V. and Yang, X. J. (2006) Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation. J. Biol. Chem. 281, 4423–4433.

    Article  PubMed  CAS  Google Scholar 

  • Gregoire, S. and Yang, X. J. (2005) Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol. Cell. Biol. 25, 2273–2287.

    Article  PubMed  CAS  Google Scholar 

  • Grozinger, C. M., Hassig, C. A. and Schreiber, S. L. (1999) Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl. Acad. Sci. USA. 96, 4868–4873.

    Google Scholar 

  • Grozinger, C. M. and Schreiber, S. L. (2000) Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl. Acad. Sci. USA. 97, 7835–7840.

    Google Scholar 

  • Gunthorpe, D., Beatty, K. E. and Taylor, M. V. (1999) Different levels, but not different isoforms, of the Drosophila transcription factor DMEF2 affect distinct aspects of muscle differentiation. Dev. Biol. 215, 130–145.

    Article  PubMed  CAS  Google Scholar 

  • Han, J., Jiang, Y., Li, Z., Kravchenko, V. V. and Ulevitch, R. J. (1997) Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296–299.

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich, K. A. and Linseman, D. A. (2004) Myocyte enhancer factor-2 transcription factors in neuronal differentiation and survival. Mol. Neurobiol. 29, 155–166.

    Article  PubMed  CAS  Google Scholar 

  • Holmstrom, S., Van Antwerp, M. E. and Iniguez-Lluhi, J. A. (2003) Direct and distinguishable inhibitory roles for SUMO isoforms in the control of transcriptional synergy. Proc. Natl. Acad. Sci. USA. 100, 15758–15763.

    Article  PubMed  CAS  Google Scholar 

  • Holtmaat, A. J., Trachtenberg, J. T., Wilbrecht, L., Shepherd, G. M., Zhang, X., Knott, G. W. and Svoboda, K. (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279–291.

    Article  PubMed  CAS  Google Scholar 

  • Ikeshima, H., Imai, S., Shimoda, K., Hata, J. and Takano, T. (1995) Expression of a MADS box gene, MEF2D, in neurons of the mouse central nervous system: implication of its binary function in myogenic and neurogenic cell lineages. Neurosci. Lett. 200, 117–120.

    Article  PubMed  CAS  Google Scholar 

  • Iniguez-Lluhi, J. A. and Pearce, D. (2000) A common motif within the negative regulatory regions of multiple factors inhibits their transcriptional synergy. Mol. Cell. Biol. 20, 6040–6050.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. S. (2004) Protein modification by SUMO. Annu Rev Biochem 73, 355–382.

    Article  PubMed  CAS  Google Scholar 

  • Kandel, E. R. (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J., Gocke, C. B. and Yu, H. (2006) Phosphorylation-facilitated sumoylation of MEF2C negatively regulates its transcriptional activity. BMC biochemistry 7, 5.

    Article  PubMed  CAS  Google Scholar 

  • Kato, Y., Kravchenko, V. V., Tapping, R. I., Han, J., Ulevitch, R. J. and Lee, J. D. (1997) BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 16, 7054–7066.

    Article  PubMed  CAS  Google Scholar 

  • Kaushal, S., Schneider, J. W., Nadal-Ginard, B. and Mahdavi, V. (1994) Activation of the myogenic lineage by MEF2A, a factor that induces and cooperates with MyoD. Science 266, 1236–1240.

    Article  PubMed  CAS  Google Scholar 

  • Knott, G. W., Holtmaat, A., Wilbrecht, L., Welker, E. and Svoboda, K. (2006) Spine growth precedes synapse formation in the adult neocortex in vivo. Nat. Neurosci. 9, 1117–1124.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. S., Kwon, Y. T., Li, M., Peng, J., Friedlander, R. M. and Tsai, L. H. (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364.

    Article  PubMed  CAS  Google Scholar 

  • Leifer, D., Golden, J. and Kowall, N. W. (1994) Myocyte-specific enhancer binding factor 2C expression in human brain development. Neuroscience 63, 1067–1079.

    Article  PubMed  CAS  Google Scholar 

  • Leifer, D., Krainc, D., Yu, Y. T., McDermott, J., Breitbart, R. E., Heng, J., Neve, R. L., Kosofsky, B., Nadal-Ginard, B. and Lipton, S. A. (1993) MEF2C, a MADS/MEF2-family transcription factor expressed in a laminar distribution in cerebral cortex. Proc. Natl. Acad. Sci. USA. 90, 1546–1550.

    Article  PubMed  CAS  Google Scholar 

  • Lemercier, C., Verdel, A., Galloo, B., Curtet, S., Brocard, M. P. and Khochbin, S. (2000) mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J. Biol. Chem. 275, 15594–15599.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Linseman, D. A., Allen, M. P., Meintzer, M. K., Wang, X., Laessig, T., Wierman, M. E. and Heidenreich, K. A. (2001) Myocyte enhancer factor 2A and 2D undergo phosphorylation and caspase-mediated degradation during apoptosis of rat cerebellar granule neurons. J. Neurosci. 21, 6544–6552.

    PubMed  CAS  Google Scholar 

  • Lin, X., Shah, S. and Bulleit, R. F. (1996) The expression of MEF2 genes is implicated in CNS neuronal differentiation. Brain Res. Mol. Brain Res. 42, 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Linseman, D. A., Bartley, C. M., Le, S. S., Laessig, T. A., Bouchard, R. J., Meintzer, M. K., Li, M. and Heidenreich, K. A. (2003) Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca(2+) //calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival. J. Biol. Chem. 278, 41472–41481.

    Article  PubMed  CAS  Google Scholar 

  • Linseman, D. A., Cornejo, B. J., Le, S. S., Meintzer, M. K., Laessig, T. A., Bouchard, R. J. and Heidenreich, K. A. (2003) A myocyte enhancer factor 2D (MEF2D) kinase activated during neuronal apoptosis is a novel target inhibited by lithium. J. Neurochem. 85, 1488–1499.

    Article  PubMed  CAS  Google Scholar 

  • Lu, J., McKinsey, T. A., Nicol, R. L. and Olson, E. N. (2000) Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc. Natl. Acad. Sci. USA. 97, 4070–4075.

    Article  PubMed  CAS  Google Scholar 

  • Lu, J., McKinsey, T. A., Zhang, C. L. and Olson, E. N. (2000) Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol. Cell 6, 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Luo, L. (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu. Rev. Cell Dev. Biol. 18, 601–635.

    Article  PubMed  CAS  Google Scholar 

  • Lyons, G. E., Micales, B. K., Schwarz, J., Martin, J. F. and Olson, E. N. (1995) Expression of MEF2 genes in the mouse central nervous system suggests a role in neuronal maturation. J. Neurosci. 15, 5727–5738.

    PubMed  CAS  Google Scholar 

  • Ma, K., Chan, J. K., Zhu, G. and Wu, Z. (2005) Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. Mol. Cell. Biol. 25, 3575–3582.

    Article  PubMed  CAS  Google Scholar 

  • Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. and Greenberg, M. E. (1999) Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785–790.

    Article  PubMed  CAS  Google Scholar 

  • Mao, Z. and Nadal-Ginard, B. (1996) Functional and physical interactions between mammalian achaete-scute homolog 1 and myocyte enhancer factor 2A. J. Biol. Chem. 271, 14371–14375.

    Article  PubMed  CAS  Google Scholar 

  • Mao, Z. and Wiedmann, M. (1999) Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons. J. Biol. Chem. 274, 31102–31107.

    Article  PubMed  CAS  Google Scholar 

  • Marinissen, M. J., Chiariello, M., Pallante, M. and Gutkind, J. S. (1999) A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter, a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Mol. Cell. Biol. 19, 4289–4301.

    PubMed  CAS  Google Scholar 

  • Martin, J. F., Miano, J. M., Hustad, C. M., Copeland, N. G., Jenkins, N. A. and Olson, E. N. (1994) A MEF2 gene that generates a muscle-specific isoform via alternative mRNA splicing. Mol. Cell. Biol. 14, 1647–1656.

    PubMed  CAS  Google Scholar 

  • McDermott, J. C., Cardoso, M. C., Yu, Y. T., Andres, V., Leifer, D., Krainc, D., Lipton, S. A. and Nadal-Ginard, B. (1993) hMEF2C gene encodes skeletal muscle- and brain-specific transcription factors. Mol. Cell. Biol. 13, 2564–2577.

    PubMed  CAS  Google Scholar 

  • McKinsey, T. A., Zhang, C. L., Lu, J. and Olson, E. N. (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111.

    Article  PubMed  CAS  Google Scholar 

  • McKinsey, T. A., Zhang, C. L. and Olson, E. N. (2000) Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14–3-3 to histone deacetylase 5. Proc. Natl. Acad. Sci. USA. 97, 14400–14405.

    Article  PubMed  CAS  Google Scholar 

  • McKinsey, T. A., Zhang, C. L. and Olson, E. N. (2001) Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 11, 497–504.

    Article  PubMed  CAS  Google Scholar 

  • McKinsey, T. A., Zhang, C. L. and Olson, E. N. (2001) Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol. Cell. Biol. 21, 6312–6321.

    Article  PubMed  CAS  Google Scholar 

  • McKinsey, T. A., Zhang, C. L. and Olson, E. N. (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem. Sci. 27, 40–47.

    Article  PubMed  CAS  Google Scholar 

  • Molkentin, J. D., Black, B. L., Martin, J. F. and Olson, E. N. (1995) Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83, 1125–1136.

    Article  PubMed  CAS  Google Scholar 

  • Molkentin, J. D. and Olson, E. N. (1996) Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc. Natl. Acad. Sci. USA. 93, 9366–9373.

    Article  PubMed  CAS  Google Scholar 

  • Naya, F. J. and Olson, E. (1999) MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr. Opin. in Cell Biol. 11, 683–688.

    Article  CAS  Google Scholar 

  • Nebreda, A. R. (2006) CDK activation by non-cyclin proteins. Curr. Opin. in Cell Biol. 18, 192–198.

    Article  CAS  Google Scholar 

  • Nimchinsky, E. A., Sabatini, B. L. and Svoboda, K. (2002) Structure and function of dendritic spines. Ann. Rev. of Physiol. 64, 313–353.

    Article  CAS  Google Scholar 

  • O’Hare, M. J., Kushwaha, N., Zhang, Y., Aleyasin, H., Callaghan, S. M., Slack, R. S., Albert, P. R., Vincent, I. and Park, D. S. (2005) Differential roles of nuclear and cytoplasmic cyclin-dependent kinase 5 in apoptotic and excitotoxic neuronal death. J. Neurosci. 25, 8954–8966.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, S., Krainc, D., Sherman, K. and Lipton, S. A. (2000) Antiapoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation. Proc. Natl. Acad. Sci. USA. 97, 7561–7566.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, S., Li, Z., Ju, C., Scholzke, M. N., Mathews, E., Cui, J., Salvesen, G. S., Bossy-Wetzel, E. and Lipton, S. A. (2002) Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis. Proc. Natl. Acad. Sci. USA. 99, 3974–3979.

    Article  PubMed  CAS  Google Scholar 

  • Olson, E. N. and Williams, R. S. (2000) Remodeling muscles with calcineurin. Bioessays 22, 510–519.

    Article  PubMed  CAS  Google Scholar 

  • Ornatsky, O. I., Cox, D. M., Tangirala, P., Andreucci, J. J., Quinn, Z. A., Wrana, J. L., Prywes, R., Yu, Y. T. and McDermott, J. C. (1999) Post-translational control of the MEF2A transcriptional regulatory protein. Nucleic Acids Res. 27, 2646–2654.

    Google Scholar 

  • Ornatsky, O. I. and McDermott, J. C. (1996) MEF2 protein expression, DNA binding specificity and complex composition, and transcriptional activity in muscle and non-muscle cells. J. Biol. Chem. 271, 24927–24933.

    Article  PubMed  CAS  Google Scholar 

  • Palay, S. L. and Chan-Palay, V. (1974) Cerebellar cortex: cytology and organization. Springer, New York.

    Google Scholar 

  • Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P. and Tsai, L. H. (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622.

    Article  PubMed  CAS  Google Scholar 

  • Ramón y Cajal, S. (1995) Histology of the nervous system of man and vertebrates. Oxford University Press, New York.

    Google Scholar 

  • Sandmann, T., Jensen, L. J., Jakobsen, J. S., Karzynski, M. M., Eichenlaub, M. P., Bork, P. and Furlong, E. E. (2006) A temporal map of transcription factor activity: MEF2 directly regulates target genes at all stages of muscle development. Dev. Cell 10, 797–807.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, R. A., Chromey, C., Lu, M. F., Zhao, B. and Olson, E. N. (1996) Expression of the D-MEF2 transcription in the Drosophila brain suggests a role in neuronal cell differentiation. Oncogene 12, 1827–1831.

    PubMed  CAS  Google Scholar 

  • Seeler, J. S. and Dejean, A. (2003) Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol. 4, 690–699.

    Article  PubMed  CAS  Google Scholar 

  • Shalizi, A., Gaudilliere, B., Yuan, Z., Stegmuller, J., Shirogane, T., Ge, Q., Tan, Y., Schulman, B., Harper, J. W. and Bonni, A. (2006) A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311, 1012–1017.

    Article  PubMed  CAS  Google Scholar 

  • Shalizi, A., Lehtinen, M., Gaudilliere, B., Donovan, N., Han, J., Konishi, Y. and Bonni, A. (2003) Characterization of a neurotrophin signaling mechanism that mediates neuron survival in a temporally specific pattern. J. Neurosci. 23, 7326–7336.

    PubMed  CAS  Google Scholar 

  • Shalizi, A. K. and Bonni, A. (2005) Brawn for Brains: The Role of MEF2 Proteins in the Developing Nervous System. Current topics in Dev. Biol. 69, 239–266.

    CAS  Google Scholar 

  • Shelton, S. B. and Johnson, G. V. (2004) Cyclin-dependent kinase-5 in neurodegeneration. J. Neurochem. 88, 1313–1326.

    Article  PubMed  CAS  Google Scholar 

  • Smith, P. D., Mount, M. P., Shree, R., Callaghan, S., Slack, R. S., Anisman, H., Vincent, I., Wang, X., Mao, Z. and Park, D. S. (2006) Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J. Neurosci. 26, 440–447.

    Article  PubMed  CAS  Google Scholar 

  • Soderling, T. R. (2000) CaM-kinases: modulators of synaptic plasticity. Curr. Opin. in Neurobio. 10, 375–380.

    Article  CAS  Google Scholar 

  • Soderling, T. R., Chang, B. and Brickey, D. (2001) Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 276, 3719–3722.

    Article  PubMed  CAS  Google Scholar 

  • Tada, T. and Sheng, M. (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. in Neurobio. 16, 95–101.

    Article  CAS  Google Scholar 

  • Takeda, K., Matsuzawa, A., Nishitoh, H., Tobiume, K., Kishida, S., Ninomiya-Tsuji, J., Matsumoto, K. and Ichijo, H. (2004) Involvement of ASK1 in Ca2+-induced p38 MAP kinase activation. EMBO reports 5, 161–166.

    Article  PubMed  CAS  Google Scholar 

  • Tang, X., Wang, X., Gong, X., Tong, M., Park, D., Xia, Z. and Mao, Z. (2005) Cyclin-dependent kinase 5 mediates neurotoxin-induced degradation of the transcription factor myocyte enhancer factor 2. J. Neurosci. 25, 4823–4834.

    Article  PubMed  CAS  Google Scholar 

  • Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J. and Greenberg, M. E. (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709–726.

    Article  PubMed  CAS  Google Scholar 

  • van der Linden, A. M., Nolan, K. M. and Sengupta, P. (2007) KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J. 26, 358–370.

    Article  PubMed  CAS  Google Scholar 

  • Verdaguer, E., Alvira, D., Jimenez, A., Rimbau, V., Camins, A. and Pallas, M. (2005) Inhibition of the cdk5/MEF2 pathway is involved in the antiapoptotic properties of calpain inhibitors in cerebellar neurons. Brit. J. Pharmacol. 145, 1103–1111.

    Article  CAS  Google Scholar 

  • Verdin, E., Dequiedt, F. and Kasler, H. G. (2003) Class II histone deacetylases: versatile regulators. Trends Genet. 19, 286–293.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D. Z., Valdez, M. R., McAnally, J., Richardson, J. and Olson, E. N. (2001) The MEF2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development 128, 4623–4633.

    PubMed  CAS  Google Scholar 

  • West, A. E., Chen, W. G., Dalva, M. B., Dolmetsch, R. E., Kornhauser, J. M., Shaywitz, A. J., Takasu, M. A., Tao, X. and Greenberg, M. E. (2001) Calcium regulation of neuronal gene expression. Proc. Natl. Acad. Sci. USA. 98, 11024–11031.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., Naya, F. J., McKinsey, T. A., Mercer, B., Shelton, J. M., Chin, E. R., Simard, A. R., Michel, R. N., Bassel-Duby, R., Olson, E. N. and Williams, R. S. (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 19, 1963–1973.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., Rothermel, B., Kanatous, S., Rosenberg, P., Naya, F. J., Shelton, J. M., Hutcheson, K. A., DiMaio, J. M., Olson, E. N., Bassel-Duby, R. and Williams, R. S. (2001) Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J. 20, 6414–6423.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C. C., Ornatsky, O. I., McDermott, J. C., Cruz, T. F. and Prody, C. A. (1998) Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1. Nucleic Acids Res. 26, 4771–4777.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S. H., Galanis, A. and Sharrocks, A. D. (1999) Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol. Cell. Biol. 19, 4028–4038.

    PubMed  CAS  Google Scholar 

  • Zhang, C. L., McKinsey, T. A., Chang, S., Antos, C. L., Hill, J. A. and Olson, E. N. (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, M., New, L., Kravchenko, V. V., Kato, Y., Gram, H., di Padova, F., Olson, E. N., Ulevitch, R. J. and Han, J. (1999) Regulation of the MEF2 family of transcription factors by p38. Mol. Cell. Biol. 19, 21–30.

    PubMed  CAS  Google Scholar 

  • Zhao, X., Sternsdorf, T., Bolger, T. A., Evans, R. M. and Yao, T. P. (2005) Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol. Cell. Biol. 25, 8456–8464.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, B. and Gulick, T. (2004) Phosphorylation and alternative pre-mRNA splicing converge to regulate myocyte enhancer factor 2C activity. Mol. Cell. Biol. 24, 8264–8275.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, B., Ramachandran, B. and Gulick, T. (2005) Alternative pre-mRNA splicing governs expression of a conserved acidic transactivation domain in myocyte enhancer factor 2 factors of striated muscle and brain. J. Biol. Chem. 280, 28749–28760.

    Article  PubMed  CAS  Google Scholar 

  • Zuo, Y., Lin, A., Chang, P. and Gan, W. B. (2005) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46, 181–189.

    Article  PubMed  CAS  Google Scholar 

  • Zuo, Y., Yang, G., Kwon, E. and Gan, W. B. (2005) Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436, 261–265.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shalizi, A., Bonni, A. (2008). Not Just for Muscle Anymore: Activity and Calcium Regulation of MEF2-Dependent Transcription in Neuronal Survival and Differentiation. In: Dudek, S.M. (eds) Transcriptional Regulation by Neuronal Activity. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73609-9_12

Download citation

Publish with us

Policies and ethics