Activity-Dependent Bigenomic Transcriptional Regulation of Cytochrome c Oxidase in Neurons

  • Margaret T.T. Wong-Riley
  • Huan Ling Liang
  • Sakkapol Ongwijitwat


Cytochrome c oxidase, a sensitive indicator of neuronal metabolic capacity and activity, is one of only four proteins in mammalian cells that are bigenomically encoded. The mitochondrial and nuclear genomes have to coordinate to form a functional holoenzyme with 13 subunits. Nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) are viable candidates for such bigenomic coordination, most likely in association with coactivators, such as peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). These three factors are themselves regulated by neuronal activity.


Oxidase Subunit Mitochondrial Transcription Factor Visual Cortical Neuron Monocular Enucleation Human Mitochondrial Transcription Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J., Staden, R. and Young, I.G. (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457–465.PubMedCrossRefGoogle Scholar
  2. Andersson, U. and Scarpulla, R.C. (2001) PGC-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol. Cell Biol. 21, 3738–3749.PubMedCrossRefGoogle Scholar
  3. Arany, Z., Novikov, M., Chin, S., Ma, Y., Rosenzweig, A. and Speigelman, B.M. (2006) Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α . Proc. Natl. Acad. Sci. 103, 10086–10091.Google Scholar
  4. Baar, K., Wende, A.R., Jones, T.E., Marison, M., Nolte, L.A., Chen, M., Kelly, D.P. and Holloszy, J.O. (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Faseb. J. 16, 1879–1886.PubMedCrossRefGoogle Scholar
  5. Bachman, N.J., Yang, T.L., Dasen, J.S., Ernst, R.E. and Lomax, M.I. (1996) Phylogenetic footprinting of the human cytochrome c oxidase subunit VB promoter. Arch. Biochem. Biophys. 333, 152–162.PubMedCrossRefGoogle Scholar
  6. Basu, A., Park, K., Atchison, M.L., Carter, R.S. and Avadhani, N.G. (1993) Identification of a transcriptional initiator element in the cytochrome c oxidase subunit Vb promoter which binds to transcription factors NF-E1 (YY-1, delta) and Sp1. J. Biol. Chem. 268, 4188–4196.PubMedGoogle Scholar
  7. Bengtsson, J., Gustafsson, T., Widegren, U., Jansson, E. and Sundberg, C. (2001) Mitochondrial transcription factor A and respiratory complex IV increase in response to exercise training in humans. Pflugers Arch. 443, 61–66.PubMedCrossRefGoogle Scholar
  8. Carter, R.S. and Avadhani, N.G. (1994) Cooperative binding of GA-binding protein transcription factors to duplicated transcription initiation region repeats of the cytochrome c oxidase subunit IV gene. J. Biol. Chem. 269, 4381–4387.PubMedGoogle Scholar
  9. Carter, R.S., Bhat, N.K., Basu, A.. and Avadhani, N.G. (1992) The basal promoter elements of murine cytochrome c oxidase subunit IV gene consist of tandemly duplicated ets motifs that bind to GABP-related transcription factors. J. Biol. Chem. 267, 23418–23426.PubMedGoogle Scholar
  10. Chantrel-Groussard, K., Deply, L., Ratinaud, M.H. and Cogne, M. (2001) Characterization of the murine gene for subunit VIIaL of cytochrome c oxidase. C.R. Adem. Sci. III 324, 1117–1123.Google Scholar
  11. Chaudhuri, A., Matsubara, J.A. and Cynader, M.S. (1995) Neuronal activity in primate visual cortex assessed by immunostaining for the transcription factor Zif268. Vis. Neurosci. 12, 35–50.PubMedCrossRefGoogle Scholar
  12. Clayton, D.A. (1991) Replication and transcription of vertebrate mitochondrial DNA. Annu. Rev. Cell Biol. 7, 409–435.CrossRefGoogle Scholar
  13. Clayton, D.A. (2000) Transcription and replication of mitochondrial DNA. Hum. Reprod. 15 Suppl. 2 11–17PubMedGoogle Scholar
  14. Dairaghi, D.J., Shadel, G.S. and Clayton, D.A. (1995) Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J. Mol. Biol. 249, 11–28.PubMedCrossRefGoogle Scholar
  15. Ekstrand, M.I., Falkenberg, M., Rantanen, A., Park, C.B., Gaspari, M., Hultenby, K., Rustin, P., Gustafsson, C.M. and Larsson, N.G.. (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Human Mol. Genetics 13, 935–944.CrossRefGoogle Scholar
  16. Evans, M.J. and Scarpulla, R.C. (1989) Interaction of nuclear factors with multiple sites in the somatic cytochrome c promoter. Characterization of upstream NRF-1, ATF, and intron Sp1 recognition sequences. J. Biol. Chem. 264, 14361–14368.PubMedGoogle Scholar
  17. Evans, M.J. and Scarpulla, R.C. (1990) NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev. 4, 1023–1034PubMedCrossRefGoogle Scholar
  18. Falkenberg, M., Gaspari, M., Rantanen, A., Trifunovic, A., Larsson, N.G.. and Gustafsson, C.M. (2002) Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat. Genet. 31, 289–294.PubMedCrossRefGoogle Scholar
  19. Fisher, R.P. and Clayton, D.A. (1988) Purification and characterization of human mitochondrial transcription factor 1. Mol. Cell Biol. 8, 3496–3509.PubMedGoogle Scholar
  20. Gleyzer, N., Vercauteren, K. and Scarpulla, R.C. (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol. Cell Biol. 25, 1354–1366.PubMedCrossRefGoogle Scholar
  21. Gopalakrishnan, L. and Scarpulla, R.C. (1995) Structure, expression, and chromosomal assignment of the human gene encoding nuclear respiratory factor 1. J. Biol. Chem. 270, 18019–18025.PubMedCrossRefGoogle Scholar
  22. Goto, M., Terada, S., Kato, M., Katoh, M., Yokozeki, T., Tabata, I. and Shimokawa, T. (2000) cDNA Cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem. Biophys. Res. Commun. 274, 350–354.PubMedCrossRefGoogle Scholar
  23. Gordon, J.W., Rungi, A.A., Inagaki, H. and Hood, D.A. (2001) Effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. J. Appl. Physiol. 90, 389–396.PubMedCrossRefGoogle Scholar
  24. Grossman, L.I., Lomax, M.I. (1997) Nuclear genes for cytochrome c oxidase. Biochim. Biophys. Acta 1352, 174–192.PubMedGoogle Scholar
  25. Gugneja, S., Virbasius, C.M. and Scarpulla, R.C. (1996) Nuclear respiratory factors 1 and 2 utilize similar glutamine-containing clusters of hydrophobic residues to activate transcription. Mol. Cell Biol. 16, 5708–5716.PubMedGoogle Scholar
  26. Guo, A.L., Nie, F. and Wong-Riley, M.T.T. (2000) Human brain nuclear respiratory factor (NRF) 2α cDNA: Isolation, subcloning, sequencing and in situ hybridization of transcripts in normal and visually deprived macaque visual system. J. Comp. Neurol. 417, 221–232.PubMedCrossRefGoogle Scholar
  27. Hevner, R.F. and Wong-Riley, M.T.T. (1991) Neuronal expression of nuclear and mitochondrial genes for cytochrome oxidase (CO) subunits analyzed by in situ hybridization: comparison with CO activity and protein. J. Neurosci. 11, 1942–1958.PubMedGoogle Scholar
  28. Hevner, R.F. and Wong-Riley, M.T.T. (1993) Mitochondrial and nuclear gene expression for cytochrome oxidase subunits are disproportionately regulated by functional activity in neurons. J. Neurosci. 13, 1805–1819.PubMedGoogle Scholar
  29. Herdegen, T., Kovary, K., Buhl, A., Bravo, R., Zimmermann, M. and Gass, P. (1995) Basal expression of the inducible transcription factors c-Jun, Jun B, Jun D, c-Fos, Fos B, and Krox-24 in the adult rat brain. J. Comp. Neurol. 354, 39–56.PubMedCrossRefGoogle Scholar
  30. Hoshinaga, H., Amuro, N., Goto, Y. and Okazaki, T. (1994) Molecular cloning and characterization of the rat cytochrome c oxidase subunit Vb gene. J. Biochem. (Tokyo) 115, 194–201.Google Scholar
  31. Huo, L. and Scarpulla, R.C. (1999) Multiple 5’-untranslated exons in the nuclear respiratory factor 1 gene span 47 kb and contribute to transcript heterogeneity and translational efficiency. Gene 233, 213–224.PubMedCrossRefGoogle Scholar
  32. Huo, L., Scarpulla, R.C. (2001) Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol. Cell Biol. 21, 644–654.PubMedCrossRefGoogle Scholar
  33. Hüttemann, M., Muhlenbein, N., Schmidt, T.R., Grossman, L.I. and Kadenbach, B. (2000) Isolation and sequence of the human cytochrome c oxidase subunit VIIaL gene. Biochim. Biophys. Acta 1492, 252–258.PubMedGoogle Scholar
  34. Inagaki, H., Kitano, S., Lin, K.H., Maeda, S. and Saito, T. (1998) Inhibition of mitochondrial gene expression by antisense RNA of mitochondrial transcription factor A (mtTFA). Biochem. Mol. Biol. Int. 45, 567–573.PubMedGoogle Scholar
  35. Inagaki, H., Hayashi, T., Matsushima, Y., Lin, K.H., Maeda, S., Ichihara, S., Kitagawa, Y. and Saito, T. (2000) Isolation of rat mitochondrial transcription factor A (r-Tfam) cDNA. DNA Seq. 11, 131–135.PubMedGoogle Scholar
  36. Irrcher, I., Adhihetty, P.J., Sheehan, T., Joseph, A.M. and Hood, D.A. (2003) PPARgamma coactivator-1alpha expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations. Am. J. Physiol. Cell Physiol. 284, C1669–1677.PubMedGoogle Scholar
  37. Kadenbach, B., Jarausch, J., Hartmann, R. and Merle, P. (1983) Separation of mammalian cytochrome c oxidase into 13 polypeptides by a sodium dodecyl sulfate-gel eletrophoretic procedure. Analyt. Biochem. 129, 517–521.PubMedCrossRefGoogle Scholar
  38. Kadenbach, B., Hüttemann, M., Arnold, S., Lee, I. and Bender, E. (2000) Mitochondrial energy metabolism is regulated via nuclear-cpded subunits of cytochrome c oxidase. Free Rad. Biol. Med. 29, 211–221.PubMedCrossRefGoogle Scholar
  39. Kelly, D.P. and Scarpulla, R.C. (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 18, 357–368.PubMedCrossRefGoogle Scholar
  40. Knutti, D. and Kralli, A. (2001) PGC-1, a versatile coactivator. Trends Endocrinol. Metab. 12, 360–365.PubMedCrossRefGoogle Scholar
  41. LaMarco, K., Thompson, C.C., Byers, B.P., Walton, E.M. and McKnight, S.L. (1991) Identification of Ets- and Notch-related subunits in GA-binding protein. Science 253, 789–792.Google Scholar
  42. Larsson, N.G., Barsh, G.S. and Clayton, D.A. (1997) Structure and chromosomal localization of the mouse mitochondrial transcription factor A gene (Tfam). Mamm. Genome 8, 139–140.PubMedCrossRefGoogle Scholar
  43. Larsson, N.G., Wang, J., Wilhelmsson, H., Oldfors, A., Rustin, P., Lewandoski, M., Barsh, G.S. and Clayton, D.A. (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231–236.PubMedCrossRefGoogle Scholar
  44. Liang, H.L. and Wong-Riley, M.T.T. (2006) Activity-dependent regulation of nuclear respiratory factor-1, nuclear respiratory factor-2, and peroxisome proliferators-activated receptor gamma coactivator-1 in neurons. NeuroReport 17, 401–405.PubMedCrossRefGoogle Scholar
  45. Liang, H.L., Ongwijitwat, S. and Wong-Riley, M.T.T. (2006) Bigenomic functional regulation of all 13 cytochrome c oxidase subunit transcripts in rat neurons in vitro and in vivo. Neurosci. 140, 177–190.CrossRefGoogle Scholar
  46. Lin, J., Wu, H., Tarr, P.T., Zhang, C.Y., Wu, Z., Boss, O., Michael, L.F., Puigserver, P., Isotani, E., Olson, E.N., Lowell, B.B., Bassel-Duby. R. and Spiegelman, B.M. (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418, 797–801.PubMedCrossRefGoogle Scholar
  47. Lin, J., Wu, P.-H., Tarr, P.T., Lindenberg, K.S., St-Pierre, J., Zhang, C.Y., Mootha, V.K., Jäger, S., Vianna, C.R., Reznick, R.M., Cui, L., Manieri, M., Donovan, M.X., Wu, Z., Cooper, M.P., Fan, M.C., Rohas, L.M., Zavacki, A.M., Cinti, S., Shulman, G.I., Lowell, B.B., Krainc. D. and Spiegelman, B.M. (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 119, 121–135.PubMedCrossRefGoogle Scholar
  48. Liu, S. and Wong-Riley, M.T.T. (1994) Nuclear-encoded mitochondrial precursor protein: Intramitochondrial delivery to dendrites and axon terminals of neurons and regulation by neuronal activity. J. Neurosci. 14, 5338–5351.PubMedGoogle Scholar
  49. Lowry, O.H. (1975) Energy metabolism in brain and its control. In: D.H. Ingvar and N.A. Lassen (Eds.), Brain Work. Alfred Benzon Symposium VIII. Academic Press, New York, pp. 377–388.Google Scholar
  50. McCulloch, V. and Shadel, G.S. (2003) Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independent of its RNA methyltransferase activity. Mol. Cell. Biol. 23, 5816–5824.PubMedCrossRefGoogle Scholar
  51. Mell, O.C., Seibel, P. and Kadenbach, B. (1994) Structural organization of the rat genes encoding liver- and heart-type of cytochrome c oxidase subunit VIa and a pseudogene related to the COXVIa-L cDNA. Gene 140, 179–186.PubMedCrossRefGoogle Scholar
  52. Murakami, T., Shimomura, Y., Yoshimura, A., Sokabe, M. and Fujitsuka, N. (1998) Induction of nuclear respiratory factor-1 expression by an acute bout of exercise in rat muscle. Biochim. Biophys. Acta 1381, 113–122.PubMedGoogle Scholar
  53. Nie, F. and Wong-Riley, M. (1999) Nuclear respiratory factor-2 subunit protein: Correlation with cytochrome oxidase and regulation by functional activity in the monkey primary visual cortex. J. Comp. Neurol. 404, 310–320.PubMedCrossRefGoogle Scholar
  54. Nisoli, E., Clementi, E., Paolucci, C., Cozzi, V., Tonello, C., Sciorati, C., Bracale, R., Valerio, A., Francolini, M., Moncada, S. and Carruba, M.O. (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299, 896–899.PubMedCrossRefGoogle Scholar
  55. Okuno, H., Kanou, S., Tokuyama, W., Li, Y.X. and Miyashita, Y. (1997) Layer-specific differential regulation of transcription factors Zif268 and Jun-D in visual cortex V1 and V2 of macaque monkeys. Neurosci. 81, 653–666.CrossRefGoogle Scholar
  56. Ongwijitwat, S. and Wong-Riley, M.T.T. (2004) Functional analysis of the rat cytochrome c oxidase subunit 6A1 promoter in primary neurons. Gene 337, 163–171.PubMedCrossRefGoogle Scholar
  57. Ongwijitwat, S. and Wong-Riley, M.T.T. (2005) Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons? Gene 360, 65–77.PubMedCrossRefGoogle Scholar
  58. Ongwijitwat, S., Liang, H.L., Graboyes, E.M. and Wong-Riley, M.T.T. (2006) Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs. Gene 374, 39–49.Google Scholar
  59. Parisi, M.A. and Clayton, D.A. (1991) Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252, 965–969.PubMedCrossRefGoogle Scholar
  60. Puigserver, P., Wu, Z., Park, C.W., Graves, R., Wright, M. and Spiegelman, B.M. (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839.PubMedCrossRefGoogle Scholar
  61. Puigserver, P., Adelmant, G., Wu, Z., Fan, M., Xu, J., O’Malley, B. and Spiegelman, B.M. (1999) Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286, 1368–1371.PubMedCrossRefGoogle Scholar
  62. Puigserver, P. and Spiegelman, B.M. (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24, 78–90.PubMedCrossRefGoogle Scholar
  63. Scarpulla, R.C. (1997) Nuclear control of respiratory chain expression in mammalian cells. J. Bioenerg. Biomemb. 29, 109–119.CrossRefGoogle Scholar
  64. Scarpulla, R.C. (2002) Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim. Biophys. Acta 1576, 1–14.PubMedGoogle Scholar
  65. Scarpulla, R.C. (2006) Nuclear control of respiratory gene expression in mammalian cells. J. Cell Biochem. 97, 673–683.PubMedCrossRefGoogle Scholar
  66. Seelan, R.S. and Grossman, L.I. (1997) Structural organization and promoter analysis of the bovine cytochrome c oxidase subunit VIIc gene. A functional role for YY1. J. Biol. Chem. 272, 19175–10181.Google Scholar
  67. Seelan, R.S., Gopalakrishnan, L., Scarpulla, R.C. and Grossman, L.I. (1996) Cytochrome c oxidase subunit VIIa liver isoform. Characterization and identification of promoter elements in the bovine gene. J. Biol. Chem. 271, 2112–2120.PubMedCrossRefGoogle Scholar
  68. Short, K.R., Vittone, J.L., Bigelow, M.L., Proctor, D.N., Rizza, R.A., Coenen-Schimke, J.M. and Nair, K.S. (2003) Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52, 1888–1896.PubMedCrossRefGoogle Scholar
  69. Smith, E.O. and Lomax, M.I. (1993) Structural organization of the bovine gene for the heart/muscle isoform of cytochrome c oxidase subunit VIa. Biochim. Biophys. Acta 1174, 63–71.PubMedGoogle Scholar
  70. Sucharov, C., Basu, A., Carter, R.S. and Avadhani, N.G. (1995) A novel transcriptional initiator activity of the GABP factor binding ets sequence repeat from the murine cytochrome c oxidase Vb gene. Gene Expr. 5, 93–111.PubMedGoogle Scholar
  71. Takata, K., Inoue, Y.H., Hirose, F., Murakami, S., Shimanouchi, K., Sakimoto, I. and Sakaguchi, K. (2003) Spatio-temporal expression of Drosophila mitochondrial transcription factor A during development. Cell Biol. Int. 27, 361–374.PubMedCrossRefGoogle Scholar
  72. Thompson, C.C., Brown, T.A. and McKnight, S.L. (1991) Convergence of Ets- and Notch-related structural motifs in a heteromeric DNA binding complex. Science 253, 762–768.PubMedCrossRefGoogle Scholar
  73. Tritos, N.A., Mastaitis, J.W., Kokkotou, E.G., Puigserver, P., Spiegelman, B.M. and Maratos-Flier, E. (2003) Characterization of the peroxisome proliferators activated receptor coactivator 1 alpha (PGC 1α ) expression in the murine brain. Brain Res. 961, 255–260.PubMedCrossRefGoogle Scholar
  74. Virbasius, J.V. and Scarpulla, R.C. (1991) Transcriptional activation through ETS domain binding sites in the cytochrome c oxidase subunit IV gene. Mol. Cell Biol. 11, 5631–5638.PubMedGoogle Scholar
  75. Virbasius, J.V. and Scarpulla, R.C. (1994) Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl. Acad. Sci. USA 91, 1309–1313.PubMedCrossRefGoogle Scholar
  76. Virbasius, J.V., Virbasius, C.A. and Scarpulla, R.C. (1993) Identity of GABP with NRF-2: a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. Gene Dev. 7, 380–392.PubMedCrossRefGoogle Scholar
  77. Virbasius, C.A., Virbasius, J.V. and Scarpulla, R.C. (1993b) NRF-1, an activator involved in nuclear-mitochondrial interaction, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Gene Dev. 7, 2431–2445.CrossRefGoogle Scholar
  78. Wong-Riley, M.T.T. (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci. 12, 94–101.PubMedCrossRefGoogle Scholar
  79. Wong-Riley, M.T.T., Mullen, M.A., Huang, Z. and Guyer, C. (1997) Brain cytochrome oxidase subunit genes: Isolation, subcloning, sequencing, light and EM in situ hybridization of transcripts, and regulation by neuronal activity. Neurosci. 79, 1035–1055.CrossRefGoogle Scholar
  80. Wong-Riley, M.T.T., Nie, F., Hevner, R.F. and Liu, S. (1998) Brain cytochrome oxidase: Functional significance and bigenomic regulation in the CNS. In: F. Gonzalez-Lima (Ed.) Cytochrome oxidase in neuronal metabolism and Alzheimer’s Disease. Plenum Press, New York, PP 1–53.Google Scholar
  81. Wong-Riley, M.T.T., Guo, A., Bachman, N.J. and Lomax, M.I. (2000) Human COX6A1gene: promoter analysis, cDNA isolation and expression in the monkey brain. Gene 247, 63–75.PubMedCrossRefGoogle Scholar
  82. Wong-Riley, M.T.T., Yang, S.J., Liang, H.L., Ning, G. and Jacobs, P. (2005) Quantitative immuno-electron microscopic analysis of nuclear respiratory factor 2 alpha and beta subunits: Normal distribution and activity-dependent regulation in mammalian visual cortex. Visual Neurosci. 22, 1–18.CrossRefGoogle Scholar
  83. Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R.C. and Spiegelman, B.M. (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124.PubMedCrossRefGoogle Scholar
  84. Xia, Y., Buja, L.M., Scarpulla, R.C. and McMillin, J.B. (1997) Electrical stimulation of neonatal cardiomyocytes results in the sequential activation of nuclear genes governing mitochondrial proliferation and differentiation. Proc. Natl. Acad. Sci. USA, 94, 11399–11404.Google Scholar
  85. Yang, S.J., Liang, H.L., Ning, G. and Wong-Riley, M.T.T. (2004) Ultrastructural study of depolarization-induced translocation of NRF-2 transcription factor in cultured rat visual cortical neurons. Eur. J. Neurosci. 19, 1153–1162.Google Scholar
  86. Yang, S.J., Liang, H.L. and Wong-Riley, M.T.T. (2006) Activity-dependent transcriptional regulation of nuclear respiratory factor-1 in cultured rat visual cortical neurons. Neurosci. 141, 1181–1192.CrossRefGoogle Scholar
  87. Zhang, C., Wong-Riley, M. (2000) Depolarization stimulation upregulates GA-binding protein in neurons: a transcription factor involved in the bigenomic expression of cytochrome oxidase subunits. Eur. J. Neurosci. 12, 1013–1023.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Margaret T.T. Wong-Riley
  • Huan Ling Liang
  • Sakkapol Ongwijitwat

There are no affiliations available

Personalised recommendations