Advertisement

NFAT-Dependent Gene Expression in the Nervous System: A Critical Mediator of Neurotrophin-Induced Plasticity

  • Rachel D. Groth
  • Paul G. Mermelstein

Abstract

The modulation of synaptic transmission in response to particular spatial and temporal patterns of neuronal firing provides a means by which information can be stored within the nervous system. Activity-dependent synaptic plasticity is thought to underlie such diverse processes as the regulation and refinement of neuronal connections during development, learning and memory within the adult brain, and persistent pain states incurred following tissue injury and inflammation. While acute changes in synaptic strength are accomplished through modulation of existing proteins that influence cellular excitability, enduring modifications require the induction of gene expression and protein synthesis. Therefore, understanding the molecular mechanisms by which transcription factors bridge signaling at the synapse to gene expression in the nucleus is of particular importance. Recent evidence suggests that the NFATc family of transcription factors plays an important role in neuronal activity-dependent gene expression. This chapter reviews these data, focusing on activation of NFAT-dependent transcription by neurotrophins, signaling molecules involved in many aspects of neuronal development and plasticity.

Keywords

Nerve Growth Factor Brain Derive Neurotrophic Factor Spinal Neuron Brain Derive Neurotrophic Factor Expression Brain Derive Neurotrophic Factor mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahamed, J., Venkatesha, R. T., Thangam, E. B. and Ali, H. (2004) C3a enhances nerve growth factor-induced NFAT activation and chemokine production in a human mast cell line, HMC-1. J. Immunol. 172, 6961–6968.PubMedGoogle Scholar
  2. Aloe, L., Tuveri, M. A. and Levi-Montalcini, R. (1992) Studies on carrageenan-induced arthritis in adult rats: presence of nerve growth factor and role of sympathetic innervation. Rheumatol. Int. 12, 213–216.PubMedGoogle Scholar
  3. Andreev, N. Y., Dimitrieva, N., Koltzenburg, M. and McMahon, S. B. (1995) Peripheral administration of nerve growth factor in the adult rat produces a thermal hyperalgesia that requires the presence of sympathetic post-ganglionic neurones. Pain. 63, 109–115.PubMedGoogle Scholar
  4. Apfel, S. C., Wright, D. E., Wiideman, A. M., Dormia, C., Snider, W. D. and Kessler, J. A. (1996) Nerve growth factor regulates the expression of brain-derived neurotrophic factor mRNA in the peripheral nervous system. Mol. Cell Neurosci. 7, 134–142.PubMedGoogle Scholar
  5. Asai, M., Iwasaki, Y., Yoshida, M., Mutsuga-Nakayama, N., Arima, H., Ito, M., Takano, K. and Oiso, Y. (2004) Nuclear factor of activated T cells (NFAT) is involved in the depolarization-induced activation of growth hormone-releasing hormone gene transcription in vitro. Mol. Endocrinol. 18, 3011–3019.PubMedGoogle Scholar
  6. Ayer-LeLievre, C., Olson, L., Ebendal, T., Seiger, A. and Persson, H. (1988) Expression of the beta-nerve growth factor gene in hippocampal neurons. Science. 240, 1339–1341.PubMedGoogle Scholar
  7. Baksh, S., Widlund, H. R., Frazer-Abel, A. A., Du, J., Fosmire, S., Fisher, D. E., DeCaprio, J. A., Modiano, J. F. and Burakoff, S. J. (2002) NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol. Cell. 10, 1071–1081.PubMedGoogle Scholar
  8. Barnes, C. A. (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol.. 93, 74–104.PubMedGoogle Scholar
  9. Beals, C. R., Sheridan, C. M., Turck, C. W., Gardner, P. and Crabtree, G. R. (1997) Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science. 275, 1930–1934.PubMedGoogle Scholar
  10. Beiche, F., Brune, K., Geisslinger, G. and Goppelt-Struebe, M. (1998) Expression of cyclooxygenase isoforms in the rat spinal cord and their regulation during adjuvant-induced arthritis. Inflamm Res. 47, 482–487.PubMedGoogle Scholar
  11. Benedito, A. B., Lehtinen, M., Massol, R., Lopes, U. G., Kirchhausen, T., Rao, A. and Bonni, A. (2005) The transcription factor NFAT3 mediates neuronal survival. J. Biol. Chem. 280, 2818–2825.PubMedGoogle Scholar
  12. Bennett, G., al-Rashed, S., Hoult, J. R. and Brain, S. D. (1998) Nerve growth factor induced hyperalgesia in the rat hind paw is dependent on circulating neutrophils. Pain. 77, 315–322.PubMedGoogle Scholar
  13. Bert, A. G., Burrows, J., Hawwari, A., Vadas, M. A. and Cockerill, P. N. (2000) Reconstitution of T cell-specific transcription directed by composite NFAT/Oct elements. J. Immunol. 165, 5646–5655.PubMedGoogle Scholar
  14. Bodor, J., Bodorova, J. and Gress, R. E. (2000) Suppression of T cell function: a potential role for transcriptional repressor ICER. J. Leukoc. Biol. 67, 774–779.PubMedGoogle Scholar
  15. Bonnington, J. K. and McNaughton, P. A. (2003) Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J. Physiol. 551, 433–446.PubMedGoogle Scholar
  16. Boss, V., Talpade, D. J. and Murphy, T. J. (1996) Induction of NFAT-mediated transcription by Gq-coupled receptors in lymphoid and non-lymphoid cells. J. Biol. Chem. 271, 10429–10432.PubMedGoogle Scholar
  17. Bower, K. E., Zeller, R. W., Wachsman, W., Martinez, T. and McGuire, K. L. (2002) Correlation of transcriptional repression by p21(SNFT) with changes in DNA.NF-AT complex interactions. J. Biol. Chem. 277, 34967–34977.PubMedGoogle Scholar
  18. Bradley, K. C., Groth, R. D. and Mermelstein, P. G. (2005) Immunolocalization of NFATc4 in the adult mouse brain. J. Neurosci. Res. 82, 762–770.PubMedGoogle Scholar
  19. Castren, E., Pitkanen, M., Sirvio, J., Parsadanian, A., Lindholm, D., Thoenen, H. and Riekkinen, P. J. (1993) The induction of LTP increases BDNF and NGF mRNA but decreases NT-3 mRNA in the dentate gyrus. Neuroreport 4, 895–898.PubMedGoogle Scholar
  20. Chen, L., Glover, J. N., Hogan, P. G., Rao, A. and Harrison, S. C. (1998) Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392, 42–48.PubMedGoogle Scholar
  21. Chin, E. R., Olson, E. N., Richardson, J. A., Yang, Q., Humphries, C., Shelton, J. M., Wu, H., Zhu, W., Bassel-Duby, R. and Williams, R. S. (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12, 2499–2509.PubMedGoogle Scholar
  22. Cho, H. J., Kim, S. Y., Park, M. J., Kim, D. S., Kim, J. K. and Chu, M. Y. (1997) Expression of mRNA for brain-derived neurotrophic factor in the dorsal root ganglion following peripheral inflammation. Brain Res. 749, 358–362.PubMedGoogle Scholar
  23. Chow, C. W., Rincon, M., Cavanagh, J., Dickens, M. and Davis, R. J. (1997) Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science 278, 1638–1641.PubMedGoogle Scholar
  24. Chytil, M. and Verdine, G. L. (1996) The Rel family of eukaryotic transcription factors. Curr. Opin. Struct. Biol. 6, 91–100.PubMedGoogle Scholar
  25. Clipstone, N. A. and Crabtree, G. R. (1992) Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357, 695–697.PubMedGoogle Scholar
  26. Crabtree, G. R. and Olson, E. N. (2002) NFAT signaling: choreographing the social lives of cells. Cell 109 Suppl, S67–79.PubMedGoogle Scholar
  27. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. and Hemmings, B. A. (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789.PubMedGoogle Scholar
  28. de la Pompa, J. L., Timmerman, L. A., Takimoto, H., Yoshida, H., Elia, A. J., Samper, E., Potter, J., Wakeham, A., Marengere, L., Langille, B. L., Crabtree, G. R. and Mak, T. W. (1998) Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392, 182–186.PubMedGoogle Scholar
  29. Decker, E. L., Nehmann, N., Kampen, E., Eibel, H., Zipfel, P. F. and Skerka, C. (2003) Early growth response proteins (EGR) and nuclear factors of activated T cells (NFAT) form heterodimers and regulate proinflammatory cytokine gene expression. Nucleic Acids Res. 31, 911–921.PubMedGoogle Scholar
  30. Decker, E. L., Skerka, C. and Zipfel, P. F. (1998) The early growth response protein (EGR-1) regulates interleukin-2 transcription by synergistic interaction with the nuclear factor of activated T cells. J. Biol. Chem. 273, 26923–26930.PubMedGoogle Scholar
  31. Deisseroth, K., Mermelstein, P. G., Xia, H. and Tsien, R. W. (2003) Signaling from synapse to nucleus: the logic behind the mechanisms. Curr. Opin. Neurobiol. 13, 354–365.PubMedGoogle Scholar
  32. Dolmetsch, R. (2003) Excitation-transcription coupling: signaling by ion channels to the nucleus. Sci STKE. 2003, PE4.Google Scholar
  33. Donnerer, J., Schuligoi, R. and Stein, C. (1992) Increased content and transport of substance P and calcitonin gene-related peptide in sensory nerves innervating inflamed tissue: evidence for a regulatory function of nerve growth factor in vivo. Neuroscience 49, 693–698.PubMedGoogle Scholar
  34. Dragunow, M., Beilharz, E., Mason, B., Lawlor, P., Abraham, W. and Gluckman, P. (1993) Brain-derived neurotrophic factor expression after long-term potentiation. Neurosci. Lett. 160, 232–236.PubMedGoogle Scholar
  35. Emmel, E. A., Verweij, C. L., Durand, D. B., Higgins, K. M., Lacy, E. and Crabtree, G. R. (1989) Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science 246, 1617–1620.PubMedGoogle Scholar
  36. Ermak, G., Morgan, T. E. and Davies, K. J. (2001) Chronic overexpression of the calcineurin inhibitory gene DSCR1 (Adapt78) is associated with Alzheimer’s disease. J. Biol. Chem. 276, 38787–38794.PubMedGoogle Scholar
  37. Ernfors, P., Wetmore, C., Olson, L. and Persson, H. (1990) Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron 5, 511–526.PubMedGoogle Scholar
  38. Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T. and Lu, B. (1996) Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709.PubMedGoogle Scholar
  39. Finkbeiner, S. (2000) CREB couples neurotrophin signals to survival messages. Neuron 25, 11–14.PubMedGoogle Scholar
  40. Flanagan, W. M., Corthesy, B., Bram, R. J. and Crabtree, G. R. (1991) Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352, 803–807.PubMedGoogle Scholar
  41. Foehr, E. D., Lin, X., O’Mahony, A., Geleziunas, R., Bradshaw, R. A. and Greene, W. C. (2000) NF-kappa B signaling promotes both cell survival and neurite process formation in nerve growth factor-stimulated PC12 cells. J. Neurosci. 20, 7556–7563.PubMedGoogle Scholar
  42. Furstenau, U., Schwaninger, M., Blume, R., Jendrusch, E. M. and Knepel, W. (1999) Characterization of a novel calcium response element in the glucagon gene. J. Biol. Chem. 274, 5851–5860.PubMedGoogle Scholar
  43. Genazzani, A. A., Carafoli, E. and Guerini, D. (1999) Calcineurin controls inositol 1,4,5-trisphosphate type 1 receptor expression in neurons. Proc. Natl. Acad. Sci. USA. 96, 5797–5801.PubMedGoogle Scholar
  44. Giffin, M. J., Stroud, J. C., Bates, D. L., von Koenig, K. D., Hardin, J. and Chen, L. (2003) Structure of NFAT1 bound as a dimer to the HIV-1 LTR kappa B element. Nat. Struct. Biol. 10, 800–806.PubMedGoogle Scholar
  45. Ginty, D. D. and Segal, R. A. (2002) Retrograde neurotrophin signaling: Trk-ing along the axon. Curr. Opin. Neurobiol. 12, 268–274.PubMedGoogle Scholar
  46. Gomez del Arco, P., Martinez-Martinez, S., Maldonado, J. L., Ortega-Perez, I. and Redondo, J. M. (2000) A role for the p38 MAP kinase pathway in the nuclear shuttling of NFATp. J. Biol. Chem. 275, 13872–13878.PubMedGoogle Scholar
  47. Graef, I. A., Chen, F., Chen, L., Kuo, A. and Crabtree, G. R. (2001) Signals transduced by Ca(2+)/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell 105, 863–875.PubMedGoogle Scholar
  48. Graef, I. A., Mermelstein, P. G., Stankunas, K., Neilson, J. R., Deisseroth, K., Tsien, R. W. and Crabtree, G. R. (1999) L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 401, 703–708.PubMedGoogle Scholar
  49. Graef, I. A., Wang, F., Charron, F., Chen, L., Neilson, J., Tessier-Lavigne, M. and Crabtree, G. R. (2003) Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 113, 657–670.PubMedGoogle Scholar
  50. Groth, R. and Aanonsen, L. (2002) Spinal brain-derived neurotrophic factor (BDNF) produces hyperalgesia in normal mice while antisense directed against either BDNF or trkB, prevent inflammation-induced hyperalgesia. Pain 100, 171–181.PubMedGoogle Scholar
  51. Groth, R.D., Bradley, K.C., Mermelstein, P.G., Nakagawa, Y. (2006a) Expression of NFATc1-4 mRNA Within the Adult Mouse Brain. Submitted. Google Scholar
  52. Groth RD, Coicou LG, Seybold VS (2006b) Neurotrophin Activation of NFAT-Dependent Transcription Within Primary Afferent and Spinal Neurons Contributes to Expression of Pro-Nociceptive Genes. Submitted. Google Scholar
  53. Groth, R. D., Dunbar, R. L. and Mermelstein, P. G. (2003) Calcineurin regulation of neuronal plasticity. Biochem. Biophys. Res. Commun. 311, 1159–1171.PubMedGoogle Scholar
  54. Groth, R. D. and Mermelstein, P. G. (2003) Brain-derived neurotrophic factor activation of NFAT (nuclear factor of activated T-cells)-dependent transcription: a role for the transcription factor NFATc4 in neurotrophin-mediated gene expression. J. Neurosci. 23, 8125–8134.PubMedGoogle Scholar
  55. Hay, C. and de Belleroche, J. (1997) Carrageenan-induced hyperalgesia is associated with increased cyclo-oxygenase-2 expression in spinal cord. Neuroreport. 8, 1249–1251.PubMedGoogle Scholar
  56. Ho, I. C., Kim, J. H., Rooney, J. W., Spiegelman, B. M. and Glimcher, L. H. (1998) A potential role for the nuclear factor of activated T cells family of transcriptional regulatory proteins in adipogenesis. Proc. Natl. Acad. Sci. USA. 95, 15537–15541.PubMedGoogle Scholar
  57. Ho, I. C., Hodge, M. R., Rooney, J. W. and Glimcher, L. H. (1996) The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973–983.PubMedGoogle Scholar
  58. Ho, S., Timmerman, L., Northrop, J. and Crabtree, G. R. (1994) Cloning and characterization of NF-ATc and NF-ATp: the cytoplasmic components of NF-AT. Adv. Exp. Med. Biol. 365, 167–173.PubMedGoogle Scholar
  59. Hoey, T., Sun, Y. L., Williamson, K. and Xu, X. (1995) Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins. Immunity. 2, 461–472.PubMedGoogle Scholar
  60. Hofer, M., Pagliusi, S. R., Hohn, A., Leibrock, J. and Barde, Y. A. (1990) Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J. 9, 2459–2464.PubMedGoogle Scholar
  61. Hogan, P. G., Chen, L., Nardone, J. and Rao, A. (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232.PubMedGoogle Scholar
  62. Holsinger, R. M., Schnarr, J., Henry, P., Castelo, V. T. and Fahnestock, M. (2000) Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer’s disease. Brain Res. Mol. Brain Res. 76, 347–354.PubMedGoogle Scholar
  63. Horigome, K., Bullock, E. D. and Johnson, E. M. J. (1994) Effects of nerve growth factor on rat peritoneal mast cells. Survival promotion and immediate-early gene induction. J. Biol. Chem. 269, 2695–2702.PubMedGoogle Scholar
  64. Hu, C. M., Jang, S. Y., Fanzo, J. C. and Pernis, A. B. (2002) Modulation of T cell cytokine production by interferon regulatory factor-4. J. Biol. Chem. 277, 49238–49246.PubMedGoogle Scholar
  65. Huang, E. J. and Reichardt, L. F. (2001) Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736.PubMedGoogle Scholar
  66. Huxford, T., Huang, D. B., Malek, S. and Ghosh, G. (1998) The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 95, 759–770.PubMedGoogle Scholar
  67. Iniguez, M. A., Martinez-Martinez, S., Punzon, C., Redondo, J. M. and Fresno, M. (2000) An essential role of the nuclear factor of activated T cells in the regulation of the expression of the cyclooxygenase-2 gene in human T lymphocytes. J. Biol. Chem. 275, 23627–23635.PubMedGoogle Scholar
  68. Isakov, N. and Altman, A. (2002) Protein kinase C(theta) in T cell activation. Annu. Rev. Immunol. 20, 761–794.PubMedGoogle Scholar
  69. Jacobs, M. D. and Harrison, S. C. (1998) Structure of an IkappaBalpha/NF-kappaB complex. Cell 95, 749–758.PubMedGoogle Scholar
  70. Jayanthi, S., Deng, X., Ladenheim, B., McCoy, M. T., Cluster, A., Cai, N. S. and Cadet, J. L. (2005) Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis. Proc. Natl. Acad. Sci. USA. 102, 868–873.PubMedGoogle Scholar
  71. Jin, L., Sliz, P., Chen, L., Macian, F., Rao, A., Hogan, P. G. and Harrison, S. C. (2003) An asymmetric NFAT1 dimer on a pseudo-palindromic kappa B-like DNA site. Nat. Struct. Biol. 10, 807–811.PubMedGoogle Scholar
  72. Kang, H. and Schuman, E. M. (1995) Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267, 1658–1662.PubMedGoogle Scholar
  73. Kang, H. and Schuman, E. M. (1996) A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273, 1402–1406.PubMedGoogle Scholar
  74. Kang, H., Welcher, A. A., Shelton, D. and Schuman, E. M. (1997) Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 19, 653–664.PubMedGoogle Scholar
  75. Kaplan, D. R., Martin-Zanca, D. and Parada, L. F. (1991) Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 350, 158–160.PubMedGoogle Scholar
  76. Kaplan, D. R. and Miller, F. D. (2000) Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391.PubMedGoogle Scholar
  77. Kerr, B. J., Bradbury, E. J., Bennett, D. L., Trivedi, P. M., Dassan, P., French, J., Shelton, D. B., McMahon, S. B. and Thompson, S. W. (1999) Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J. Neurosci. 19, 5138–5148.PubMedGoogle Scholar
  78. Kincaid, R. L., Balaban, C. D. and Billingsley, M. L. (1987) Differential localization of calmodulin-dependent enzymes in rat brain: evidence for selective expression of cyclic nucleotide phosphodiesterase in specific neurons. Proc. Natl. Acad. Sci. USA. 84, 1118–1122.PubMedGoogle Scholar
  79. Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H. and Bonhoeffer, T. (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA. 92, 8856–8860.PubMedGoogle Scholar
  80. Korte, M., Griesbeck, O., Gravel, C., Carroll, P., Staiger, V., Thoenen, H. and Bonhoeffer, T. (1996) Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc. Natl. Acad. Sci. USA. 93, 12547–12552.PubMedGoogle Scholar
  81. Lamballe, F., Klein, R. and Barbacid, M. (1991) The trk family of oncogenes and neurotro phin receptors. Princess Takamatsu Symp. 22, 153–170.PubMedGoogle Scholar
  82. Lever, I. J., Bradbury, E. J., Cunningham, J. R., Adelson, D. W., Jones, M. G., McMahon, S. B., Marvizon, J. C. and Malcangio, M. (2001) Brain-derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. J. Neurosci. 21, 4469–4477.PubMedGoogle Scholar
  83. Levine, E. S., Dreyfus, C. F., Black, I. B. and Plummer, M. R. (1995) Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc. Natl. Acad. Sci. USA. 92, 8074–8077.PubMedGoogle Scholar
  84. Liu, J., Farmer, J. D. J., Lane, W. S., Friedman, J., Weissman, I. and Schreiber, S. L. (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815.PubMedGoogle Scholar
  85. Liu, Q. R., Lu, L., Zhu, X. G., Gong, J. P., Shaham, Y. and Uhl, G. R. (2006) Rodent BDNF genes, novel promoters, novel splice variants, and regulation by cocaine. Brain Res. 1067, 1–12.PubMedGoogle Scholar
  86. Lonze, B. E., Riccio, A., Cohen, S. and Ginty, D. D. (2002) Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34, 371–385.PubMedGoogle Scholar
  87. Lopez-Rodriguez, C., Aramburu, J., Rakeman, A. S. and Rao, A. (1999) NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Proc. Natl. Acad. Sci. USA. 96, 7214–7219.PubMedGoogle Scholar
  88. Macian, F., Garcia-Rodriguez, C. and Rao, A. (2000) Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun. EMBO J. 19, 4783–4795.PubMedGoogle Scholar
  89. Macian, F., Lopez-Rodriguez, C. and Rao, A. (2001) Partners in transcription: NFAT and AP-1. Oncogene. 20, 2476–2489.PubMedGoogle Scholar
  90. Mannion, R. J., Costigan, M., Decosterd, I., Amaya, F., Ma, Q. P., Holstege, J. C., Ji, R. R., Acheson, A., Lindsay, R. M., Wilkinson, G. A. and Woolf, C. J. (1999) Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc. Natl. Acad. Sci. USA. 96, 9385–9390.PubMedGoogle Scholar
  91. Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. and Greenberg, M. E. (1999) Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science. 286, 785–790.PubMedGoogle Scholar
  92. Markus, A., Patel, T. D. and Snider, W. D. (2002) Neurotrophic factors and axonal growth. Curr. Opin. Neurobiol. 12, 523–531.PubMedGoogle Scholar
  93. Mazurek, N., Weskamp, G., Erne, P. and Otten, U. (1986) Nerve growth factor induces mast cell degranulation without changing intracellular calcium levels. FEBS Lett. 198, 315–320.PubMedGoogle Scholar
  94. McKinsey, T. A., Zhang, C. L. and Olson, E. N. (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem. Sci. 27, 40–47.PubMedGoogle Scholar
  95. Mendell, L. M., Albers, K. M. and Davis, B. M. (1999) Neurotrophins, nociceptors, and pain. Microsc. Res. Tech. 45, 252–261.PubMedGoogle Scholar
  96. Michael, G. J., Averill, S., Nitkunan, A., Rattray, M., Bennett, D. L., Yan, Q. and Priestley, J. V. (1997) Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J. Neurosci. 17, 8476–8490.PubMedGoogle Scholar
  97. Millan, M. J. (1999) The induction of pain: an integrative review. Prog. Neurobiol. 57, 1–164.PubMedGoogle Scholar
  98. Miller, F. D. and Kaplan, D. R. (2001) On Trk for retrograde signaling. Neuron 32, 767–770.PubMedGoogle Scholar
  99. Minichiello, L., Calella, A. M., Medina, D. L., Bonhoeffer, T., Klein, R. and Korte, M. (2002) Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36, 121–137.PubMedGoogle Scholar
  100. Misra, R. P., Bonni, A., Miranti, C. K., Rivera, V. M., Sheng, M. and Greenberg, M. E. (1994) L-type voltage-sensitive calcium channel activation stimulates gene expression by a serum response factor-dependent pathway. J. Biol. Chem. 269, 25483–25493.PubMedGoogle Scholar
  101. Miyakawa, H., Woo, S. K., Dahl, S. C., Handler, J. S. and Kwon, H. M. (1999) Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. Proc. Natl. Acad. Sci. USA. 96, 2538–2542.PubMedGoogle Scholar
  102. Molkentin, J. D., Lu, J. R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., Grant, S. R. and Olson, E. N. (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228.PubMedGoogle Scholar
  103. Murer, M. G., Yan, Q. and Raisman-Vozari, R. (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog. Neurobiol. 63, 71–124.PubMedGoogle Scholar
  104. Myers, S. J., Peters, J., Huang, Y., Comer, M. B., Barthel, F. and Dingledine, R. (1998) Transcriptional regulation of the GluR2 gene: neural-specific expression, multiple promoters, and regulatory elements. J. Neurosci. 18, 6723–6739.PubMedGoogle Scholar
  105. Northrop, J. P., Ho, S. N., Chen, L., Thomas, D. J., Timmerman, L. A., Nolan, G. P., Admon, A. and Crabtree, G. R. (1994) NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 369, 497–502.PubMedGoogle Scholar
  106. Obermeier, A., Lammers, R., Wiesmuller, K. H., Jung, G., Schlessinger, J. and Ullrich, A. (1993) Identification of Trk binding sites for SHC and phosphatidylinositol 3’-kinase and formation of a multimeric signaling complex. J. Biol. Chem. 268, 22963–22966.PubMedGoogle Scholar
  107. Ohmichi, M., Decker, S. J. and Saltiel, A. R. (1992b) Activation of phosphatidylinositol-3 kinase by nerve growth factor involves indirect coupling of the trk proto-oncogene with src homology 2 domains. Neuron 9, 769–777.Google Scholar
  108. Ohmichi, M., Decker, S. J. and Saltiel, A. R. (1992a) Nerve growth factor stimulates the tyrosine phosphorylation of a 38-kDa protein that specifically associates with the src homology domain of phospholipase C-gamma 1. J. Biol. Chem. 267, 21601–21606.Google Scholar
  109. Olson, E. N. and Williams, R. S. (2000) Remodeling muscles with calcineurin. Bioessays 22, 510–519.PubMedGoogle Scholar
  110. Pap, M. and Cooper, G. M. (1998) Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J. Biol. Chem. 273, 19929–19932.PubMedGoogle Scholar
  111. Patel, T. D., Jackman, A., Rice, F. L., Kucera, J. and Snider, W. D. (2000) Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 25, 345–357.PubMedGoogle Scholar
  112. Patterson, S. L., Abel, T., Deuel, T. A., Martin, K. C., Rose, J. C. and Kandel, E. R. (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137–1145.PubMedGoogle Scholar
  113. Patterson, S. L., Grover, L. M., Schwartzkroin, P. A. and Bothwell, M. (1992) Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9, 1081–1088.PubMedGoogle Scholar
  114. Phillips, H. S., Hains, J. M., Armanini, M., Laramee, G. R., Johnson, S. A. and Winslow, J. W. (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 7, 695–702.PubMedGoogle Scholar
  115. Plyte, S., Boncristiano, M., Fattori, E., Galvagni, F., Paccani, S. R., Majolini, M. B., Oliviero, S., Ciliberto, G., Telford, J. L. and Baldari, C. T. (2001) Identification and characterization of a novel nuclear factor of activated T-cells-1 isoform expressed in mouse brain. J. Biol. Chem. 276, 14350–14358.PubMedGoogle Scholar
  116. Polli, J. W., Billingsley, M. L. and Kincaid, R. L. (1991) Expression of the calmodulin-dependent protein phosphatase, calcineurin, in rat brain: developmental patterns and the role of nigrostriatal innervation. Brain Res. Dev. Brain Res. 63, 105–119.PubMedGoogle Scholar
  117. Ranger, A. M., Gerstenfeld, L. C., Wang, J., Kon, T., Bae, H., Gravallese, E. M., Glimcher, M. J. and Glimcher, L. H. (2000) The nuclear factor of activated T cells (NFAT) transcription factor NFATp (NFATc2) is a repressor of chondrogenesis. J. Exp. Med. 191, 9–22.PubMedGoogle Scholar
  118. Ranger, A. M., Grusby, M. J., Hodge, M. R., Gravallese, E. M., de la Brousse, F. C., Hoey, T., Mickanin, C., Baldwin, H. S. and Glimcher, L. H. (1998) The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392, 186–190.PubMedGoogle Scholar
  119. Rao, A., Luo, C. and Hogan, P. G. (1997) Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747.PubMedGoogle Scholar
  120. Rengarajan, J., Mowen, K. A., McBride, K. D., Smith, E. D., Singh, H. and Glimcher, L. H. (2002) Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. J. Exp. Med. 195, 1003–1012.PubMedGoogle Scholar
  121. Reynolds, A. J., Bartlett, S. E. and Hendry, I. A. (2000) Molecular mechanisms regulating the retrograde axonal transport of neurotrophins. Brain Res. Brain Res. Rev. 33, 169–178.PubMedGoogle Scholar
  122. Riccio, A., Ahn, S., Davenport, C. M., Blendy, J. A. and Ginty, D. D. (1999) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–2361.PubMedGoogle Scholar
  123. Rothermel, B. A., Vega, R. B. and Williams, R. S. (2003) The role of modulatory calcineurin-interacting proteins in calcineurin signaling. Trends Cardiovasc. Med. 13, 15–21.PubMedGoogle Scholar
  124. Saarelainen, T., Vaittinen, S. and Castren, E. (2001) trkB-receptor activation contributes to the kainate-induced increase in BDNF mRNA synthesis. Cell. Mol. Neurobiol. 21, 429–435.PubMedGoogle Scholar
  125. Samad, T. A., Moore, K. A., Sapirstein, A., Billet, S., Allchorne, A., Poole, S., Bonventre, J. V. and Woolf, C. J. (2001) Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 410, 471–475.PubMedGoogle Scholar
  126. Schreiber, S. L. and Crabtree, G. R. (1995) Immunophilins, ligands, and the control of signal transduction. Harvey Lect. 91, 99–114.PubMedGoogle Scholar
  127. Seybold, V. S., Coicou, L. G., Groth, R. D. and Mermelstein, P. G. (2006) Substance P initiates NFAT-dependent gene expression in spinal neurons. J. Neurochem. 97, 397–407.PubMedGoogle Scholar
  128. Seybold, V. S., Jia, Y. P. and Abrahams, L. G. (2003) Cyclo-oxygenase-2 contributes to central sensitization in rats with peripheral inflammation. Pain 105, 47–55.PubMedGoogle Scholar
  129. Shaw, J. P., Utz, P. J., Durand, D. B., Toole, J. J., Emmel, E. A. and Crabtree, G. R. (1988) Identification of a putative regulator of early T cell activation genes. Science 241, 202–205.PubMedGoogle Scholar
  130. Shen, W., Zhang, C. and Zhang, G. (2002) Nuclear factor kappaB activation is mediated by NMDA and non-NMDA receptor and L-type voltage-gated Ca(2+) channel following severe global ischemia in rat hippocampus. Brain Res. 933, 23–30.PubMedGoogle Scholar
  131. Shieh, P. B., Hu, S. C., Bobb, K., Timmusk, T. and Ghosh, A. (1998) Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron 20, 727–740.PubMedGoogle Scholar
  132. Shioda, N., Moriguchi, S., Shirasaki, Y. and Fukunaga, K. (2006) Generation of constitutively active calcineurin by calpain contributes to delayed neuronal death following mouse brain ischemia. J. Neurochem. 98, 310–320.PubMedGoogle Scholar
  133. Shu, X. and Mendell, L. M. (1999) Nerve growth factor acutely sensitizes the response of adult rat sensory neurons to capsaicin. Neurosci. Lett. 274, 159–162.PubMedGoogle Scholar
  134. Sofroniew, M. V., Howe, C. L. and Mobley, W. C. (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu. Rev. Neurosci. 24, 1217–1281.PubMedGoogle Scholar
  135. Soppet, D., Escandon, E., Maragos, J., Middlemas, D. S., Reid, S. W., Blair, J., Burton, L. E., Stanton, B. R., Kaplan, D. R., Hunter, T. and et, a. (1991) The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 65, 895–903.PubMedGoogle Scholar
  136. Stephens, R. M., Loeb, D. M., Copeland, T. D., Pawson, T., Greene, L. A. and Kaplan, D. R. (1994) Trk receptors use redundant signal transduction pathways involving SHC and PLC-gamma 1 to mediate NGF responses. Neuron 12, 691–705.PubMedGoogle Scholar
  137. Tabakman, R., Lecht, S., Sephanova, S., Arien-Zakay, H. and Lazarovici, P. (2004) Interactions between the cells of the immune and nervous system: neurotrophins as neuroprotection mediators in CNS injury. Prog. Brain Res. 146, 387–401.PubMedGoogle Scholar
  138. Takaishi, T., Saito, N., Kuno, T. and Tanaka, C. (1991) Differential distribution of the mRNA encoding two isoforms of the catalytic subunit of calcineurin in the rat brain. Biochem. Biophys. Res. Commun. 174, 393–398.PubMedGoogle Scholar
  139. Tolwani, R. J., Buckmaster, P. S., Varma, S., Cosgaya, J. M., Wu, Y., Suri, C. and Shooter, E. M. (2002) BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus. Neuroscience. 114, 795–805.PubMedGoogle Scholar
  140. Tomita, M., Reinhold, M. I., Molkentin, J. D. and Naski, M. C. (2002) Calcineurin and NFAT4 induce chondrogenesis. J. Biol. Chem. 277, 42214–42218.PubMedGoogle Scholar
  141. Tucker, K. L., Meyer, M. and Barde, Y. A. (2001) Neurotrophins are required for nerve growth during development. Nat. Neurosci. 4, 29–37.PubMedGoogle Scholar
  142. Tyler, W. J. and Pozzo-Miller, L. D. (2001) BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J. Neurosci. 21, 4249–4258.PubMedGoogle Scholar
  143. Ueda, Y., Hirai, S., Osada, S., Suzuki, A., Mizuno, K. and Ohno, S. (1996) Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. J. Biol. Chem. 271, 23512–23519.PubMedGoogle Scholar
  144. van Rooij, E., Doevendans, P. A., de Theije, C. C., Babiker, F. A., Molkentin, J. D. and de Windt, L. J. (2002) Requirement of nuclear factor of activated T-cells in calcineurin-mediated cardiomyocyte hypertrophy. J. Biol. Chem. 277, 48617–48626.PubMedGoogle Scholar
  145. Vetter, M. L., Martin-Zanca, D., Parada, L. F., Bishop, J. M. and Kaplan, D. R. (1991) Nerve growth factor rapidly stimulates tyrosine phosphorylation of phospholipase C-gamma 1 by a kinase activity associated with the product of the trk protooncogene. Proc. Natl. Acad. Sci. USA. 88, 5650–5654.PubMedGoogle Scholar
  146. Weick, J. P., Groth, R. D., Isaksen, A. L. and Mermelstein, P. G. (2003) Interactions with PDZ proteins are required for L-type calcium channels to activate cAMP response element-binding protein-dependent gene expression. J. Neurosci. 23, 3446–3456.PubMedGoogle Scholar
  147. Weick, J. P., Kuo, S. P. and Mermelstein, P. G. (2005a) L-type calcium channel regulation of neuronal gene expression. Cellsci. Rev. 1, 44-49.Google Scholar
  148. Weick, J. P., Kuo, S. P. and Mermelstein, P. G. (2005b) NFATc regulates GluR2 expression in the hippocampus. Soc. Neurosci. Abstr. 734.14Google Scholar
  149. Weskamp, G. and Otten, U. (1987) An enzyme-linked immunoassay for nerve growth factor (NGF): a tool for studying regulatory mechanisms involved in NGF production in brain and in peripheral tissues. J. Neurochem. 48, 1779–1786.PubMedGoogle Scholar
  150. West, A. E., Griffith, E. C. and Greenberg, M. E. (2002) Regulation of transcription factors by neuronal activity. Nat. Rev. Neurosci. 3, 921–931.PubMedGoogle Scholar
  151. Woo, S. K., Lee, S. D. and Kwon, H. M. (2002) TonEBP transcriptional activator in the cellular response to increased osmolality. Pflugers Arch. 444, 579–585.PubMedGoogle Scholar
  152. Woolf, C. J., Safieh-Garabedian, B., Ma, Q. P., Crilly, P. and Winter, J. (1994) Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience. 62, 327–331.PubMedGoogle Scholar
  153. Wooten, M. W., Seibenhener, M. L., Mamidipudi, V., Diaz-Meco, M. T., Barker, P. A. and Moscat, J. (2001) The atypical protein kinase C-interacting protein p62 is a scaffold for NF-kappaB activation by nerve growth factor. J. Biol. Chem. 276, 7709–7712.PubMedGoogle Scholar
  154. Yang, J., Rothermel, B., Vega, R. B., Frey, N., McKinsey, T. A., Olson, E. N., Bassel-Duby, R. and Williams, R. S. (2000a) Independent signals control expression of the calcineurin inhibitory proteins MCIP1 and MCIP2 in striated muscles. Circ. Res. 87, E61–8.Google Scholar
  155. Yang, T. T., Xiong, Q., Enslen, H., Davis, R. J. and Chow, C. W. (2002) Phosphorylation of NFATc4 by p38 mitogen-activated protein kinases. Mol. Cell Biol. 22, 3892–3904.PubMedGoogle Scholar
  156. Yang, X. Y., Wang, L. H., Chen, T., Hodge, D. R., Resau, J. H., DaSilva, L. and Farrar, W. L. (2000b) Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma co-association with transcription factor NFAT. J. Biol. Chem. 275, 4541–4544.Google Scholar
  157. Yiu, G. K. and Toker, A. (2006) NFAT induces breast cancer cell invasion by promoting the induction of cyclooxygenase-2. J. Biol. Chem. 281, 12210–12217.PubMedGoogle Scholar
  158. Yoshida, T. and Mishina, M. (2005) Distinct roles of calcineurin-nuclear factor of activated T-cells and protein kinase A-cAMP response element-binding protein signaling in presynaptic differentiation. J. Neurosci. 25, 3067–3079.PubMedGoogle Scholar
  159. Zhang, H., Maximov, A., Fu, Y., Xu, F., Tang, T. S., Tkatch, T., Surmeier, D. J. and Bezprozvanny, I. (2005) Association of CaV1.3 L-type calcium channels with Shank. J. Neurosci. 25, 1037–1049.PubMedGoogle Scholar
  160. Zhu, J., Shibasaki, F., Price, R., Guillemot, J. C., Yano, T., Dotsch, V., Wagner, G., Ferrara, P. and McKeon, F. (1998) Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93, 851–861.PubMedGoogle Scholar
  161. Zhuang, Z. Y., Xu, H., Clapham, D. E. and Ji, R. R. (2004) Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J. Neurosci. 24, 8300–8309.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Rachel D. Groth
  • Paul G. Mermelstein

There are no affiliations available

Personalised recommendations