Skip to main content

Transcriptional Regulation of Activity-Dependent Genes by Birdsong

  • Chapter
Transcriptional Regulation by Neuronal Activity

Abstract

Birdsong is a natural learned behavior used extensively for vocal communication and controlled by a well-characterized set of discrete brain areas in songbirds. The acts of hearing and producing birdsong lead to robust transcriptional regulation of expression of activity-dependent genes in auditory and vocal control areas respectively. Therefore, birdsong provides an ideal paradigm to study transcription regulation by a natural learned stimulus in the brain of awake behaving animals. In this chapter we first discuss briefly some basic aspects of birdsong neurobiology, focusing on the substrates for perceptual and motor aspects of vocal communication in songbirds. We then discuss our current knowledge of the influence of stimulus type, behavioral condition and context on transcriptional regulation by song; the mechanisms regulating induced gene expression in song-encoding neurons; and the possible functional significance of the transcriptional response to song in auditory and song control areas of the songbird brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, A.P. (1980) Effects of androgens on volumes of sexually dimorphic brain regions in the zebra finch. Brain Research, 185, 441–444.

    PubMed  CAS  Google Scholar 

  • Arnold, A.P., Bottjer, S.W., Brenowitz, E.A., Nordeen, E.J. & Nordeen, K.W. (1986) Sexual dimorphisms in the neural vocal control system in song birds: Ontogeny and phylogeny. Brain, Behavior and Evolution, 28, 22–31.

    PubMed  CAS  Google Scholar 

  • Aston-Jones, G. & Bloom, F.E. (1981a) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci, 1, 876–886.

    CAS  Google Scholar 

  • Aston-Jones, G. & Bloom, F.E. (1981b) Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci, 1, 887–900.

    CAS  Google Scholar 

  • Avey, M.T., Phillmore, L.S. & MacDougall-Shackleton, S.A. (2005) Immediate early gene expression following exposure to acoustic and visual components of courtship in zebra finches. Behav Brain Res, 165, 247–253.

    PubMed  CAS  Google Scholar 

  • Berridge, M.J. (1998) Neuronal calcium signaling. Neuron, 21, 13–26.

    PubMed  CAS  Google Scholar 

  • Bolhuis, J.J., Zijlstra, G.G., den Boer-Visser, A.M. & Van Der Zee, E.A. (2000) Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proc Natl Acad Sci U S A, 97, 2282–2285.

    PubMed  CAS  Google Scholar 

  • Bonke, B.A., Bonke, D. & Scheich, H. (1979) Connectivity of the auditory forebrain nuclei in the guinea fowl (numida meleagris). Cell and Tissue Research, 200, 101–121.

    PubMed  CAS  Google Scholar 

  • Bottjer, S.W. (1993) The distribution of tyrosine hydroxylase immunoreactivity in the brains of male and female zebra finches. Journal of Neurobiology, 24, 51–69.

    PubMed  CAS  Google Scholar 

  • Bottjer, S.W., Halsema, K.A., Brown, S.A. & Miesner, E.A. (1989) Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches. Journal of Comparative Neurology, 279, 312–326.

    PubMed  CAS  Google Scholar 

  • Bottjer, S.W., Miesner, E.A. & Arnold, A.P. (1984) Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science, 224, 901–903.

    PubMed  CAS  Google Scholar 

  • Brauth, S.E. & McHale, C.M. (1988) Auditory pathways in the budgerigar. Ii. Intratelencephalic pathways. Brain, Behavior and Evolution, 32, 193–207.

    CAS  Google Scholar 

  • Brauth, S.E., McHale, C.M., Brasher, C.A. & Dooling, R.J. (1987) Auditory pathways in the budgerigar. I. Thalamo-telencephalic projections. Brain, Behavior and Evolution, 30, 174–199.

    CAS  Google Scholar 

  • Brenowitz, E.A. (1997) Comparative approaches to the avian song system. Journal of Neurobiology, 33, 517–531.

    PubMed  CAS  Google Scholar 

  • Brenowitz, E.A. (2004) Plasticity of the adult avian song control system. Ann N Y Acad Sci, 1016, 560–585.

    PubMed  CAS  Google Scholar 

  • Brenowitz, E.A. & Arnold, A.P. (1990) The effects of systemic androgen treatment on androgen accumulation in song control regions of the adult female canary brain. Journal of Neurobiology, 21, 837–843.

    PubMed  CAS  Google Scholar 

  • Brenowitz, E.A., Margoliash, D. & Nordeen, K.W. (1997) The neurobiology of birdsong. Journal of Neurobiology, 33.

    Google Scholar 

  • Butler, A.B. & Hodos, W. (1996) Comparative vertebrate neuroanatomy: Evolution and adaptation. Wiley-Liss, New York, NY.

    Google Scholar 

  • Cabelli, R.J., Hohn, A. & Shatz, C.J. (1995) Inhibition of ocular dominance column formation by infusion of nt-4/5 or bdnf. Science, 267, 1662–1666.

    PubMed  CAS  Google Scholar 

  • Castelino, C.B. & Ball, G.F. (2005) A role for norepinephrine in the regulation of context-dependent zenk expression in male zebra finches (taeniopygia guttata). Eur J Neurosci, 21, 1962–1972.

    PubMed  Google Scholar 

  • Casto, J.M. & Ball, G.F. (1996) Early administration of 17beta-estradiol partially masculinizes song control regions and alpha2-adrenergic receptor distribution in european starlings (sturnus vulgaris). Hormones and Behavior, 30, 387–406.

    PubMed  CAS  Google Scholar 

  • Catchpole, C.K. & Slater, P.J.B. (1995) Bird song: Biological themes and variations. Cambridge University Press, U.K.

    Google Scholar 

  • Causing, C.G., Gloster, A., Aloyz, R., Bamji, S.X., Chang, E., Fawcett, J., Kuchel, G. & Miller, F.D. (1997) Synaptic innervation density is regulated by neuron-derived bdnf. Neuron, 18, 257–267.

    PubMed  CAS  Google Scholar 

  • Cheng, H.Y. & Clayton, D.F. (2004) Activation and habituation of extracellular signal-regulated kinase phosphorylation in zebra finch auditory forebrain during song presentation. J Neurosci, 24, 7503–7513.

    PubMed  CAS  Google Scholar 

  • Chew, S.J., Mello, C., Nottebohm, F., Jarvis, E. & Vicario, D.S. (1995) Decrements in auditory responses to a repeated conspecific song are long-lasting and require two periods of protein synthesis in the songbird forebrain. Proc Natl Acad Sci U S A, 92, 3406–3410.

    PubMed  CAS  Google Scholar 

  • Christy, B. & Nathans, D. (1989) DNA binding site of the growth factor-inducible protein zif268. Proceedings of the National Academy of Sciences U S A, 86, 8737–8741.

    CAS  Google Scholar 

  • Cirelli, C., Pompeiano, M. & Tononi, G. (1996) Neuronal gene expression in the waking state: A role for the locus coeruleus. Science, 274, 1211–1215.

    PubMed  CAS  Google Scholar 

  • Cirelli, C. & Tononi, G. (2000) Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. Journal of Neuroscience, 20, 9187–9194.

    PubMed  CAS  Google Scholar 

  • Clayton, D.F. (2000) The genomic action potential. Neurobiol Learn Mem, 74, 185–216.

    PubMed  CAS  Google Scholar 

  • Ding, L., Perkel, D.J. & Farries, M.A. (2003) Presynaptic depression of glutamatergic synaptic transmission by d1-like dopamine receptor activation in the avian basal ganglia. J Neurosci, 23, 6086–6095.

    PubMed  CAS  Google Scholar 

  • Doupe, A.J. & Kuhl, P.K. (1999) Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22, 567–631.

    PubMed  CAS  Google Scholar 

  • Eales, L.A. (1985) Song learning in zebra finches: Some effects of song model availability on what is learnt and when. Animal Behavior, 33, 1293–1300.

    Google Scholar 

  • Finkbeiner, S. & Greenberg, M.E. (1998) Ca2+ channel-regulated neuronal gene expression. J Neurobiol, 37, 171–189.

    PubMed  CAS  Google Scholar 

  • Gentner, T.Q. & Hulse, S.H. (2000) Female european starling preference and choice for variation in conspecific male song. Animal Behavior, 59, 443–458.

    Google Scholar 

  • Gentner, T.Q., Hulse, S.H., Duffy, D. & Ball, G.F. (2001) Response biases in auditory forebrain regions of female songbirds following exposure to sexually relevant variation in male song. Journal of Neurobiology, 46, 48–58.

    PubMed  CAS  Google Scholar 

  • Ghosh, A., Ginty, D.D., Bading, H. & Greenberg, M.E. (1994) Calcium regulation of gene expression in neuronal cells. Journal of Neurobiology, 25, 294–303.

    PubMed  CAS  Google Scholar 

  • Goelet, P., Castellucci, V.F., Schacher, S. & Kandel, E.R. (1986) The long and the short of long-term memory–a molecular framework. Nature, 322, 419–422.

    PubMed  CAS  Google Scholar 

  • Goldman, S.A. & Nottebohm, F. (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proceedings of the National Academy of Sciences U S A, 80, 2390–2394.

    CAS  Google Scholar 

  • Grewal, S.S., York, R.D. & Stork, P.J.S. (1999) Extracellular-signal-regulated kinase signallin in neurons. Curr Opin Neurobiol, 9, 544–553.

    PubMed  CAS  Google Scholar 

  • Grimm, R., Schicknick, H., Riede, I., Gundelfinger, E.D., Herdegen, T., Zuschratter, W. & Tischmeyer, W. (1997) Suppression of c-fos induction in rat brain impairs retention of a brightness discrimination reaction. Learn Mem, 3, 402–413.

    PubMed  CAS  Google Scholar 

  • Guzowski, J.F. (2002) Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus, 12, 86–104.

    PubMed  CAS  Google Scholar 

  • Guzowski, J.F., Lyford, G.L., Stevenson, G.D., Houston, F.P., McGaugh, J.L., Worley, P.F. & Barnes, C.A. (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci, 20, 3993–4001.

    PubMed  CAS  Google Scholar 

  • Guzowski, J.F. & McGaugh, J.L. (1997) Antisense oligodeoxynucleotide-mediated disruption of hippocampal camp response element binding protein levels impairs consolidation of memory for water maze training. Proc Natl Acad Sci U S A, 94, 2693–2698.

    PubMed  CAS  Google Scholar 

  • Hessler, N.A. & Doupe, A.J. (1999a) Singing-related neural activity in a dorsal forebrain-basal ganglia circuit of adult zebra finches. Journal of Neuroscience, 19, 10461–10481.

    CAS  Google Scholar 

  • Hessler, N.A. & Doupe, A.J. (1999b) Social context modulates singing-related neural activity in the songbird forebrain. Nature Neuroscience, 2, 209–211.

    CAS  Google Scholar 

  • Horch, H.W., Kruttgen, A., Portbury, S.D. & Katz, L.C. (1999) Destabilization of cortical dendrites and spines by bdnf. Neuron, 23, 353–364.

    PubMed  CAS  Google Scholar 

  • Husi, H., Ward, M.A., Choudhary, J.S., Blackstock, W.P. & Grant, S.G. (2000) Proteomic analysis of nmda receptor-adhesion protein signaling complexes. Nat Neurosci, 3, 661–669.

    PubMed  CAS  Google Scholar 

  • Immelmann, K. (1969) Song development in the zebra finch and other estrilid finches. In Hinde, R.A. (ed.) Bird vocalizations. Cambridge University Press, Cambridge, U.K., pp. 61–74.

    Google Scholar 

  • Jarvis, E.D., Gunturkun, O., Bruce, L., Csillag, A., Karten, H., Kuenzel, W., Medina, L., Paxinos, G., Perkel, D.J., Shimizu, T., Striedter, G., Wild, J.M., Ball, G.F., Dugas-Ford, J., Durand, S.E., Hough, G.E., Husband, S., Kubikova, L., Lee, D.W., Mello, C.V., Powers, A., Siang, C., Smulders, T.V., Wada, K., White, S.A., Yamamoto, K., Yu, J., Reiner, A. & Butler, A.B. (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci, 6, 151–159.

    PubMed  CAS  Google Scholar 

  • Jarvis, E.D., Mello, C.V. & Nottebohm, F. (1995) Associative learning and stimulus novelty influence the song-induced expression of an immediate early gene in the canary forebrain. Learn Mem, 2, 62–80.

    PubMed  CAS  Google Scholar 

  • Jarvis, E.D. & Nottebohm, F. (1997) Motor-driven gene expression. Proc Natl Acad Sci U S A, 94, 4097–4102.

    PubMed  CAS  Google Scholar 

  • Jarvis, E.D., Scharff, C., Grossman, M.R., Ramos, J.A. & Nottebohm, F. (1998) For whom the bird sings: Context-dependent gene expression. Neuron, 21, 775–788.

    PubMed  CAS  Google Scholar 

  • Johnson, F., Sablan, M.M. & Bottjer, S.W. (1995) Topographic organization of a forebrain pathway involved with vocal learning in zebra finches. Journal of Comparative Neurology, 358, 260–278.

    PubMed  CAS  Google Scholar 

  • Jones, M.W., Errington, M.L., French, P.J., Fine, A., Bliss, T.V., Garel, S., Charnay, P., Bozon, B., Laroche, S. & Davis, S. (2001) A requirement for the immediate early gene zif268 in the expression of late ltp and long-term memories. Nat Neurosci, 4, 289–296.

    PubMed  CAS  Google Scholar 

  • Kang, H. & Schuman, E.M. (1995) Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science, 267, 1658–1662.

    PubMed  CAS  Google Scholar 

  • Karten, H.J. (1968) The ascending auditory pathway in the pigeon (columba livia). Ii. Telencephalic projections of the nucleus ovoidalis thalami. Brain Research, 11, 134–153.

    PubMed  CAS  Google Scholar 

  • Karten, H.J. & Hodos, W. (1967) A stereotaxic atlas of the brain of the pigeon (columba livia). Johns Hopkins Press, Baltimore, MD.

    Google Scholar 

  • Kelley, D.B. & Nottebohm, F. (1979) Projections of a telencephalic auditory nucleus-field l-in the canary. J Comp Neurol, 183, 455–469.

    PubMed  CAS  Google Scholar 

  • Kimpo, R.R. & Doupe, A.J. (1997) Fos is induced by singing in distinct neuronal populations in a motor network. Neuron, 18, 315–325.

    PubMed  CAS  Google Scholar 

  • Knapska, E. & Kaczmarek, L. (2004) A gene for neuronal plasticity in the mammalian brain: Zif268/egr-1/ngfi-a/krox-24/tis8/zenk? Prog Neurobiol, 74, 183–211.

    PubMed  CAS  Google Scholar 

  • Konishi, M. (1965) Effects of deafening on song development in american robins and black- headed grosbeaks. Z Tierpsychol, 22, 584–599.

    PubMed  CAS  Google Scholar 

  • Kroodsma, D.E. & Miller, E.H. (1996) Ecology and evolution of acoustic communication in birds. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Kruse, A.A., Stripling, R. & Clayton, D.F. (2000) Minimal experience required for immediate-early gene induction in zebra finch neostriatum. Neurobiology of Learning and Memory, 74, 179–184.

    PubMed  CAS  Google Scholar 

  • Kruse, A.A., Stripling, R. & Clayton, D.F. (2004) Context-specific habituation of the zenk gene response to song in adult zebra finches. Neurobiol Learn Mem, 82, 99–108.

    PubMed  CAS  Google Scholar 

  • Lanahan, A. & Worley, P. (1998) Immediate-early genes and synaptic function. Neurobiol Learn Mem, 70, 37–43.

    PubMed  CAS  Google Scholar 

  • Lee, J.L., Everitt, B.J. & Thomas, K.L. (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science, 304, 839–843.

    PubMed  CAS  Google Scholar 

  • Leitner, S., Voigt, C., Metzdorf, R. & Catchpole, C.K. (2005) Immediate early gene (zenk, arc) expression in the auditory forebrain of female canaries varies in response to male song quality. J Neurobiol, 64, 275–284.

    PubMed  CAS  Google Scholar 

  • Leonardo, A. & Konishi, M. (1999) Decrystallization of adult birdsong by perturbation of auditory feedback. Nature, 399, 466–470.

    PubMed  CAS  Google Scholar 

  • Levine, E.S., Dreyfus, C.F., Black, I.B. & Plummer, M.R. (1995) Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc Natl Acad Sci U S A, 92, 8074–8077.

    PubMed  CAS  Google Scholar 

  • Lewis, J.W., Ryan, S.M., Arnold, A.P. & Butcher, L.L. (1981) Evidence for a catecholaminergic projection to area x in the zebra finch. Journal of Comparative Neurology, 196, 347–354.

    PubMed  CAS  Google Scholar 

  • Link, W., Konietzko, U., Kauselmann, G., Krug, M., Schwanke, B., Frey, U. & Kuhl, D. (1995) Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc Natl Acad Sci U S A, 92, 5734–5738.

    PubMed  CAS  Google Scholar 

  • Lohof, A.M., Ip, N.Y. & Poo, M.M. (1993) Potentiation of developing neuromuscular synapses by the neurotrophins nt-3 and bdnf. Nature, 363, 350–353.

    PubMed  CAS  Google Scholar 

  • Luo, M., Ding, L. & Perkel, D.J. (2001) An avian basal ganglia pathway essential for vocal learning forms a closed topographic loop. J Neurosci, 21, 6836–6845.

    PubMed  CAS  Google Scholar 

  • Marler, P. & Peters, S. (1977) Selective vocal learning in a sparrow. Science, 198, 519–521.

    PubMed  Google Scholar 

  • McAllister, A.K., Lo, D.C. & Katz, L.C. (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron, 15, 791–803.

    PubMed  CAS  Google Scholar 

  • McKenzie, T.L., Hernandez, A.M. & Macdougall-Shackleton, S.A. (2006) Experience with songs in adulthood reduces song-induced gene expression in songbird auditory forebrain. Neurobiol Learn Mem.

    Google Scholar 

  • Mello, C., Nottebohm, F. & Clayton, D. (1995a) Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene’s response to that song in zebra finch telencephalon. J Neurosci, 15, 6919–6925.

    CAS  Google Scholar 

  • Mello, C.V. (1998) Auditory experience, gene regulation and auditory memories in songbirds. Journal of the Brazilian Association for the Advancement of Science, 50, 189–196.

    CAS  Google Scholar 

  • Mello, C.V. (2002) Mapping vocal communication pathways in birds with inducible gene expression. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 188, 943–959.

    PubMed  CAS  Google Scholar 

  • Mello, C.V. & Clayton, D.F. (1994) Song-induced zenk gene expression in auditory pathways of songbird brain and its relation to the song control system. J Neurosci, 14, 6652–6666.

    PubMed  CAS  Google Scholar 

  • Mello, C.V. & Clayton, D.F. (1995b) Differential induction of the zenk gene in the avian forebrain and song control circuit after metrazole-induced depolarization. J Neurobiol, 26, 145–161.

    CAS  Google Scholar 

  • Mello, C.V., Pinaud, R. & Ribeiro, S. (1998a) Noradrenergic system of the zebra finch brain: Immunocytochemical study of dopamine-beta-hydroxylase. Journal of Comparative Neurology, 400, 207–228.

    CAS  Google Scholar 

  • Mello, C.V. & Ribeiro, S. (1998b) Zenk protein regulation by song in the brain of songbirds. Journal of Comparative Neurology, 393, 426–438.

    CAS  Google Scholar 

  • Mello, C.V., Vates, G.E., Okuhata, S. & Nottebohm, F. (1998c) Descending auditory pathways in the adult male zebra finch (taeniopygia guttata). Journal of Comparative Neurology, 395, 137–160.

    CAS  Google Scholar 

  • Mello, C.V., Velho, T.A. & Pinaud, R. (2004) Song-induced gene expression: A window on song auditory processing and perception. Ann N Y Acad Sci, 1016, 263–281.

    PubMed  CAS  Google Scholar 

  • Mello, C.V., Vicario, D.S. & Clayton, D.F. (1992) Song presentation induces gene expression in the songbird forebrain. Proc Natl Acad Sci U S A, 89, 6818–6822.

    PubMed  CAS  Google Scholar 

  • Metzger, M., Jiang, S. & Braun, K. (1998) Organization of the dorsocaudal neostriatal complex: A retrograde and anterograde tracing study in the domestic chick with special emphasis on pathways relevant to imprinting. Journal of Comparative Neurology, 395, 380–404.

    PubMed  CAS  Google Scholar 

  • Milbrandt, J. (1987) A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science, 238, 797–799.

    PubMed  CAS  Google Scholar 

  • Montag-Sallaz, M. & Montag, D. (2003) Learning-induced arg 3.1/arc mrna expression in the mouse brain. Learn Mem, 10, 99–107.

    PubMed  Google Scholar 

  • Montag-Sallaz, M., Welzl, H., Kuhl, D., Montag, D. & Schachner, M. (1999) Novelty-induced increased expression of immediate-early genes c-fos and arg 3.1 in the mouse brain. J Neurobiol, 38, 234–246.

    PubMed  CAS  Google Scholar 

  • Morrow, B.A., Elsworth, J.D., Inglis, F.M. & Roth, R.H. (1999) An antisense oligonucleotide reverses the footshock-induced expression of fos in the rat medial prefrontal cortex and the subsequent expression of conditioned fear-induced immobility. J Neurosci, 19, 5666–5673.

    PubMed  CAS  Google Scholar 

  • Nordeen, K.W. & Nordeen, E.J. (1992) Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches. Behavioral and Neural Biology, 57, 58–66.

    PubMed  CAS  Google Scholar 

  • Nottebohm, F. (1972) The origins of vocal learning. American Naturalist, 106, 116–140.

    Google Scholar 

  • Nottebohm, F. (1981) A brain for all seasons: Cyclical anatomical changes in song control nuclei of the canary brain. Science, 214, 1368–1370.

    PubMed  CAS  Google Scholar 

  • Nottebohm, F. & Arnold, A.P. (1976) Sexual dimorphism in vocal control areas of the songbird brain. Science, 194, 211–213.

    PubMed  CAS  Google Scholar 

  • Nottebohm, F., Kelley, D.B. & Paton, J.A. (1982) Connections of vocal control nuclei in the canary telencephalon. Journal of Comparative Neurology, 207, 344–357.

    PubMed  CAS  Google Scholar 

  • Nottebohm, F., Nottebohm, M.E. & Crane, L. (1986) Developmental and seasonal changes in canary song and their relation to changes in the anatomy of song-control nuclei. Behavioral and Neural Biology, 46, 445–471.

    PubMed  CAS  Google Scholar 

  • Nottebohm, F., Stokes, T.M. & Leonard, C.M. (1976) Central control of song in the canary, serinus canarius. Journal of Comparative Neurology, 165, 457–486.

    PubMed  CAS  Google Scholar 

  • Olveczky, B.P., Andalman, A.S. & Fee, M.S. (2005) Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol, 3, e153.

    PubMed  Google Scholar 

  • Park, K.H. & Clayton, D.F. (2002) Influence of restraint and acute isolation on the selectivity of the adult zebra finch zenk gene response to acoustic stimuli. Behav Brain Res, 136, 185–191.

    PubMed  Google Scholar 

  • Paton, J.A. & Nottebohm, F.N. (1984) Neurons generated in the adult brain are recruited into functional circuits. Science, 225, 1046–1048.

    PubMed  CAS  Google Scholar 

  • Patterson, S.L., Abel, T., Deuel, T.A., Martin, K.C., Rose, J.C. & Kandel, E.R. (1996) Recombinant bdnf rescues deficits in basal synaptic transmission and hippocampal ltp in bdnf knockout mice. Neuron, 16, 1137–1145.

    PubMed  CAS  Google Scholar 

  • Petersohn, D., Schoch, S., Brinkmann, D.R. & Thiel, G. (1995) The human synapsin ii gene promoter. Possible role for the transcription factor zif268/egr-1, polyoma enhancer activator 3, and ap2. J Biol Chem, 270, 24361–24369.

    PubMed  CAS  Google Scholar 

  • Phan, M.L., Pytte, C.L. & Vicario, D.S. (2006) Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds. Proc Natl Acad Sci U S A, 103, 1088–1093.

    PubMed  CAS  Google Scholar 

  • Pinaud, R., Velho, T.A., Jeong, J.K., Tremere, L.A., Leao, R.M., von Gersdorff, H. & Mello, C.V. (2004) Gabaergic neurons participate in the brain’s response to birdsong auditory stimulation. Eur J Neurosci, 20, 1318–1330.

    PubMed  Google Scholar 

  • Poopatanapong, A., Teramitsu, I., Byun, J.S., Vician, L.J., Herschman, H.R. & White, S.A. (2006) Singing, but not seizure, induces synaptotagmin iv in zebra finch song circuit nuclei. J Neurobiol, 66, 1613–1629.

    PubMed  CAS  Google Scholar 

  • Price, P. (1979) Developmenteal determinants of structure in zebra finch song. Journal of Comparative Physiology and Psychology, 93, 260–277.

    Google Scholar 

  • Reiner, A., Perkel, D.J., Bruce, L.L., Butler, A.B., Csillag, A., Kuenzel, W., Medina, L., Paxinos, G., Shimizu, T., Striedter, G., Wild, M., Ball, G.F., Durand, S., Gunturkun, O., Lee, D.W., Mello, C.V., Powers, A., White, S.A., Hough, G., Kubikova, L., Smulders, T.V., Wada, K., Dugas-Ford, J., Husband, S., Yamamoto, K., Yu, J., Siang, C. & Jarvis, E.D. (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol, 473, 377–414.

    PubMed  Google Scholar 

  • Ribeiro, S., Cecchi, G.A., Magnasco, M.O. & Mello, C.V. (1998) Toward a song code: Evidence for a syllabic representation in the canary brain. Neuron, 21, 359–371.

    PubMed  CAS  Google Scholar 

  • Ribeiro, S. & Mello, C.V. (2000) Gene expression and synaptic plasticity in the auditory forebrain of songbirds. Learn Mem, 7, 235–243.

    PubMed  CAS  Google Scholar 

  • Sasaki, A., Sotnikova, T.D., Gainetdinov, R.R. & Jarvis, E.D. (2006) Social context-dependent singing-regulated dopamine. J Neurosci, 26, 9010–9014.

    PubMed  CAS  Google Scholar 

  • Scharff, C. & Nottebohm, F. (1991) A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: Implications for vocal learning. Journal of Neuroscience, 11, 2896–2913.

    PubMed  CAS  Google Scholar 

  • Sockman, K.W., Gentner, T.Q. & Ball, G.F. (2002) Recent experience modulates forebrain gene-expression in response to mate-choice cues in european starlings. Proc R Soc Lond B Biol Sci, 269, 2479–2485.

    Google Scholar 

  • Sockman, K.W., Gentner, T.Q. & Ball, G.F. (2004) Complementary neural systems for the experience-dependent integration of mate-choice cues in european starlings. J Neurobiol, 62, 72–81.

    Google Scholar 

  • Sohrabji, F., Nordeen, E.J. & Nordeen, K.W. (1990) Selective impairment of song learning following lesions of a forebrain nucleus in the juvenile zebra finch. Behavioral and Neural Biology, 53, 51–63.

    PubMed  CAS  Google Scholar 

  • Sonnenberg, J.L., Rauscher, F.J., Morgan, J.I. & Curran, T. (1989) Regulation of proenkephalin by fos and jun. Science, 246, 1622–1625.

    PubMed  CAS  Google Scholar 

  • Steward, O., Wallace, C.S., Lyford, G.L. & Worley, P.F. (1998) Synaptic activation causes the mrna for the ieg arc to localize selectively near activated postsynaptic sites on dendrites. Neuron, 21, 741–751.

    PubMed  CAS  Google Scholar 

  • Steward, O. & Worley, P.F. (2001) Selective targeting of newly synthesized arc mrna to active synapses requires nmda receptor activation. Neuron, 30, 227–240.

    PubMed  CAS  Google Scholar 

  • Stripling, R., Volman, S.F. & Clayton, D.F. (1997) Response modulation in the zebra finch neostriatum: Relationship to nuclear gene regulation. J Neurosci, 17, 3883–3893.

    PubMed  CAS  Google Scholar 

  • Terleph, T.A., Mello, C.V. & Vicario, D.S. (2006) Auditory topography and temporal response dynamics of canary caudal telencephalon. J Neurobiol, 66, 281–292.

    PubMed  Google Scholar 

  • Terpstra, N.J., Bolhuis, J.J., Riebel, K., van der Burg, J.M. & den Boer-Visser, A.M. (2006) Localized brain activation specific to auditory memory in a female songbird. J Comp Neurol, 494, 784–791.

    PubMed  Google Scholar 

  • Thiel, G., Schoch, S. & Petersohn, D. (1994) Regulation of synapsin i gene expression by the zinc finger transcription factor zif268/egr-1. J Biol Chem, 269, 15294–15301.

    PubMed  CAS  Google Scholar 

  • Vates, G.E., Broome, B.M., Mello, C.V. & Nottebohm, F. (1996) Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. J Comp Neurol, 366, 613–642.

    PubMed  CAS  Google Scholar 

  • Vates, G.E., Vicario, D.S. & Nottebohm, F. (1997) Reafferent thalamo- “cortical” loops in the song system of oscine songbirds. Journal of Comparative Neurology, 380, 275–290.

    PubMed  CAS  Google Scholar 

  • Velho, T.A., Pinaud, R., Rodrigues, P.V. & Mello, C.V. (2005) Co-induction of activity-dependent genes in songbirds. Eur J Neurosci, 22, 1667–1678.

    PubMed  Google Scholar 

  • Velho, T.A.F. & Mello, C.V. (2002) Synapsin ii, a candidate zenk target, is regulated by song in the songbird ncm Society for Neuroscience Annual Meeting, Orlando, Fl.

    Google Scholar 

  • Velho, T.A.F., Pinaud, R., Jeong, J. & Mello, C. (2003) Differential subcellular localization of zenk mrna reveals neuronal populations activated by two different songs in zebra finch ncm. Society for Neuroscience Annual Meeting, New Orleans.

    Google Scholar 

  • Velho, T.A.F., Ribeiro, S., Pinaud, R. & Mello, C.V. (2006) Noradrenergic modulation of song-induced gene expression in the caudomedial nidopallium (ncm) of zebra finches Society for Neuroscience Annual Meeting. SFN, Atlanta.

    Google Scholar 

  • Wada, K., Howard, J.T., McConnell, P., Whitney, O., Lints, T., Rivas, M.V., Horita, H., Patterson, M.A., White, S.A., Scharff, C., Haesler, S., Zhao, S., Sakaguchi, H., Hagiwara, M., Shiraki, T., Hirozane-Kishikawa, T., Skene, P., Hayashizaki, Y., Carninci, P. & Jarvis, E.D. (2006) A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proc Natl Acad Sci U S A, 103, 15212–15217.

    PubMed  CAS  Google Scholar 

  • Wada, K., Sakaguchi, H., Jarvis, E.D. & Hagiwara, M. (2004) Differential expression of glutamate receptors in avian neural pathways for learned vocalization. J Comp Neurol, 476, 44–64.

    PubMed  CAS  Google Scholar 

  • Wade, J. & Arnold, A.P. (2004) Sexual differentiation of the zebra finch song system. Ann N Y Acad Sci, 1016, 540–559.

    PubMed  CAS  Google Scholar 

  • Wang, J.Q., Tang, Q., Parelkar, N.K., Liu, Z., Samdani, S., Choe, E.S. & Yang, L.M., L. (2004) Glutamate signaling to ras-mapk in striatal neurons. Molecular Neurobiology, 29, 1–14.

    PubMed  Google Scholar 

  • Weaver, I.C., Cervoni, N., Champagne, F.A., D’Alessio, A.C., Sharma, S., Seckl, J.R., Dymov, S., Szyf, M. & Meaney, M.J. (2004) Epigenetic programming by maternal behavior. Nat Neurosci, 7, 847–854.

    PubMed  CAS  Google Scholar 

  • Wild, J.M. (1993) Descending projections of the songbird nucleus robustus archistriatalis. Journal of Comparative Neurology, 338, 225–241.

    PubMed  CAS  Google Scholar 

  • Woolley, S.M. & Rubel, E.W. (2002) Vocal memory and learning in adult bengalese finches with regenerated hair cells. J Neurosci, 22, 7774–7787.

    PubMed  CAS  Google Scholar 

  • Yu, A.C. & Margoliash, D. (1996) Temporal hierarchical control of singing in birds. Science, 273, 1871–1875.

    PubMed  CAS  Google Scholar 

  • Zeigler, H.P. & Marler, P. (2004) Behavioral neurology of birdsong. The New York Academy of Sciences, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Velho, T.A., Mello, C.V. (2008). Transcriptional Regulation of Activity-Dependent Genes by Birdsong. In: Dudek, S.M. (eds) Transcriptional Regulation by Neuronal Activity. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73609-9_1

Download citation

Publish with us

Policies and ethics