Skip to main content

Electrochemical Fabrication of Nanostructured, Compositionally Modulated Metal Multilayers (CMMMs)

  • Chapter
  • First Online:
Book cover Electrochemistry at the Nanoscale

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Compositionally modulated (CM) materials started attracting attention when it was found that they had unusual mechanical [1, 2], magnetic [3–5], electronic [5], and corrosion properties [6–9]. Nanostructured, compositionally modulated materials usually consist of stacks of two or three different metals, metal oxides, ceramics, as shown in Fig. 1, which have significantly different properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Tsalakos and A. F Jankowski, “Mechanical Properties of Composition-Modulated Metallic Foils” Ann. Rev. Mater. Sci., 16, (1986) 293–313.

    Article  Google Scholar 

  2. T. Foecke and D. S. Lashmore, “Mechanical Behaviour of Compositionally Modulated Alloys” Scripta Metallurgica et Materialia, 27, (1992) 651–656.

    Article  CAS  Google Scholar 

  3. R. D. Schull and L. H. Benett, “Nanocomposite Magnetic Materials” Nanostructured Materials, 1 (1992) 83–88.

    Article  Google Scholar 

  4. M. Alper, K. Attenborough, R. Hart, S. J. Lane, D. S. Lashmore, C. Younes and W. Schwarzacher, “Giant Magnetoresistance in Electrodeposited Superlattices”, Appl. Phys. Lett., 63–15 (1993), 2144–2146.

    Article  Google Scholar 

  5. J. Tóth, L. F. Kiss, E. Tóth-Kádár, A. Dinia, V. Pierron-Bohnes and I. Bakonyi, “Giant Magnetoresistance and Magnetic Properties of Electrodeposited Ni81Cu19/Cu Multilayers” J. Magnetism Magnetic Mater., 198–199, (1999) 243–245.

    Article  Google Scholar 

  6. M. E. Bahrololoom, D. R. Gabe and G. D. Wilcox, “Development of a Bath for Electrodeposition of Zinc-Cobalt Compositionally Modulated Alloy Multilayered Coatings”, J. Electrochem. Soc., 150–3 (2003) C144–C151.

    Article  Google Scholar 

  7. J. D. Jensen, “Engineering Metal Microstructures: Process-Microstructure-Property Relationships for Electrodeposits”, Dissertation no. 784, Linkoping Studies in Science and Technology, Linkoping Universitet, SE-581 83 Linkoping, Sweden. ISBN: 91-7373-458-6.

    Google Scholar 

  8. J. D. Jensen, D. R. Gabe and G. D. Wilcox, “The Practical Realisation of Zinc-Iron CMA Coatings”, Surf. Coatings Tech., 105 (1998) 240–250.

    Article  CAS  Google Scholar 

  9. J. D. Jensen, G. W. Critchlow and D. R. Gabe, “A Study on Zinc-Iron Alloy Electrodeposition from a Chloride Electrolyte” Trans. Inst. Met. Finish., 76–5 (1998) 187–191.

    Google Scholar 

  10. S. K. J. Lenczowski, C. Schönenberger, M. A. M. Gijs and W. J. M. Jonge, “Giant Magnetoresistance of Electrodeposited Co/Cu Coatings” J. Magnetism Magnetic Mater., 148 (1995) 455–465.

    Article  CAS  Google Scholar 

  11. A. Blondel, J. P. Meier, B. Doudin and J.-Ph. Ansermet, “Giant Magnetoresistance of Nanowires of Multilayers” Appl. Phys. Lett. 65 (1994) 3019–3021.

    Article  CAS  Google Scholar 

  12. Á. Cziraki, L. Péter, V. Weihnacht, J. Tóth, E. Simon, J. Pádár, L. Pogány, C. M. Schneider, T. Gemming, K. Wetzig, G. Tichy and I. Bakoyi, “Structure and Giant Magnetoresistance Behaviour of Co-Cu/Cu Multilayers Electrodeposited Under Various Conditions”, J. Nanosci. Nanotechnol., 6–7, (2006) 2000–2012.

    Article  Google Scholar 

  13. W. Schwarzacher and D. S. Lashmore, “Giant Magnetoresistance in Electrodeposited Films” IEEE Trans. On Magnetics, 32 (1996) 3133–3153.

    Article  CAS  Google Scholar 

  14. J. P. Celis, D. Drees, M. Z. Huq, P. Q. Wu and M. De Bonte, “Hybrid Processes – a Versatile Technique to Match Process Requirements and Coating Needs” Surf. Coating. Tech., 113 (1999) 165–181.

    Article  CAS  Google Scholar 

  15. Y. D Gamburg, “Electrodeposition of Alloys with Composition Modulated over Their Thickness: A Review”, Transl. from Electrokhimiya, 37–6, (2001) 686–692.

    Google Scholar 

  16. W. Blum, Trans. A. Electrochem. Soc., 40 (1921) 307–320.

    Google Scholar 

  17. C. Ogden, “High Strength Composite Copper-Nickel Electrodeposits” Plat. Surf. Finishing, 73, (1986) 130–134.

    CAS  Google Scholar 

  18. L. M. Goldman, B. Blancpain, F. Spaepen, “Short Wavelength Compositionally Modulated Ni/Ni-P Films Prepared by Electrodeposition”, J. Appl. Phys., 60, (1986) 1374–1376.

    Article  CAS  Google Scholar 

  19. L. M. Goldman, C. A. Ross, W. Ohashi, D. Wu and F. Spaepen, “New Dual Bath Technique for Electrodeposition of Short Repeat Length Multilayers”, Appl. Phys. Lett., 55–21, (1989) 2182–2184.

    Article  Google Scholar 

  20. C. A. Ross, L. M. Goldman and F. Spaepen, “An Electrodeposition Technique for Producing Multilayers of Nickel-Phosphorus and Other Alloys”, J. Electrochem. Soc., 140, (1993), 91–98.

    Article  CAS  Google Scholar 

  21. C. Ross, “Electrodeposited Multilayer Thin Films”, Annu. Rev. Mater. Sci., 24, (1994) 159–188.

    Article  CAS  Google Scholar 

  22. G. Wouters, J.-P. Celis and J. R. Roos, “The Electrocrystallisation of Compositionally Modulated Multilayers of Tin and Amorphous Nickel-Phosphorus”, J. Electrochem. Soc., 140, (1993) 3639–3643.

    Article  CAS  Google Scholar 

  23. G. Wouters, M. Bratoeva, J.-P. Celis and J. R. Roos, “Electrochemical Diagnostic of Bright Tin Deposition in View of the Electrolytic Synthesis of Ni-P/Sn Multilayers”, J. Electrochem. Soc., 141, (1994) 397–401.

    Article  CAS  Google Scholar 

  24. A. S. M. A. Haseeb, J.-P. Celis and J. R. Roos, “Dual Bath Electrodeposition of Cu/Ni Compositionally Modulated Multilayers”, J. Electrochem. Soc., 141, (1994) 230–237.

    Article  CAS  Google Scholar 

  25. P. T. Tang, P. Leisner, P. Møller, C. Neilsen and D. M. Nabirani, “Dual Bath Plating Composition Modulated Alloys (CMA) Based on a Newly Developed Computer Controlled Plating System”, SUR/FIN’94, June 20–23 (1994), Indianapolis.

    Google Scholar 

  26. D. M. A, Nabirani, P. T. Tang and P. Leisner, “The Electrolytic Plating of Compositionally Modulated Alloys and Laminated Metal Nano-structures Based on an Automated Computer-Controlled Dual-Bath System”, Nanotechnology, 7, (1996) 134–143.

    Article  Google Scholar 

  27. A. Brenner, “Electrodeposition of Alloys” Vol. II, p. 589, Academic Press, New York (1963).

    Google Scholar 

  28. U. Cohen, K. R. Walton and R. Sard, “Electroplating of Cyclic Multilayered Alloy Plating for Electrical Contact Applications”, J. Electrochem. Soc., 130, (1983). 1987–1995.

    Article  CAS  Google Scholar 

  29. J. Yahalom and O. Zadok, “Formation of Composition-Modulated Alloys by Electrodeposition” J. Mater. Sci., 22, (1987) 499–503.

    Article  CAS  Google Scholar 

  30. J. Yahalom and O. Zadok, “Method for the Production of Alloys Possessing High Elastic Modulus and Improved Magnetic Properties by Electrodeposition” US Patent No. 4652348 (1987).

    Google Scholar 

  31. J. Yahalom, D. F. Tessier, R. S. Timsit, A. M. Rosenfeld, D. F. Mitchell and P. T. Robinson, “Structure of Composition-Modulated Cu/Ni Thin Films Prepared by Electrodeposition” J. Mater. Res., 4, (1989) 755–758.

    Article  CAS  Google Scholar 

  32. D. S. Lashmore and M. P. Dariel, “Electrodeposited Cu-Ni Textured Superlattices” J. Electrochem. Soc., 135, (1988) 1218–1221.

    Article  CAS  Google Scholar 

  33. M. Dariel, L. H. Bennett, D. S. Lashmore, P. Lubitz, M. Rubinstein, W. L. Lechter and M. Z. Hartford, “Properties of Electrodeposited Co-Cu Multilayer Structures”, J. Appl. Phys., 61–18, (1987), 4067–4069.

    Article  Google Scholar 

  34. D. Tench and J. White, “Tensile Properties of Nanostructured Ni-Cu Multilayered Materials Prepared by Electrodeposition” J. Electrochem. Soc., 138 (1991) 3757–3758.

    Article  CAS  Google Scholar 

  35. D. M. Tench and J. T. White, “Considerations in Electrodeposition of Compositionally Modulated Alloys” J. Electrochem. Soc., 137, (1990) 3061–3066.

    Article  CAS  Google Scholar 

  36. D. M. Tench and J. T. White, “A New Periodic Displacement Method Applied to Electrodeposition of Cu-Ag Alloys” J. Electrochem. Soc., 139, (1992) 443–446.

    Article  CAS  Google Scholar 

  37. A. R. Despic and V. D. Jovic, “Electrochemical Formation of Laminar Deposits of Controlled Structure and Composition: 1. Single Current Pulse Galvanostatic Technique” J. Electrochem. Soc., 134, (1987) 3004–3011.

    Article  CAS  Google Scholar 

  38. A. R. Despic, V. D. Jovic and S. Spaic, “Electrochemical Formation of Laminar Deposits of Controlled Structure and Composition: 1. Dual Current Pulse Galvanostatic Technique” J. Electrochem. Soc., 136, (1989) 1651–1657.

    Article  CAS  Google Scholar 

  39. D. T. Schwartz, P. Stroeve and B. G. Higgins, “Electrodeposition of Composition-Modulated Alloys in Fluctuating Flow Field” AIChE J., 35, (1989) 1315–1327.

    Article  CAS  Google Scholar 

  40. D. T. Schwartz, “Multilayered Alloys Induced by Fluctuating Flow” J. Electrochem. Soc., 138, (1989) 53C–56C.

    Article  Google Scholar 

  41. S. D. Leith and D. T. Schwartz, “Flow-Induced Composition Modulated Ni-Fe Thin Films with Nanometer-Scale Wavelengths” J. Electrochem. Soc., 143 (1996) 873–878.

    Article  CAS  Google Scholar 

  42. J. A. Medina and D. T. Schwartz, “Electrodeposition of Flow Induced Composition Modulated NiFe Alloys in the Uniform Injection Cell” Electrochim. Acta, 42, (1997) 2679–2684.

    Article  CAS  Google Scholar 

  43. S. Roy, “An Analytical Equation to Compute the Composition of Pulse Plated Binary Alloys” Plat. Surf. Finish., 76 (1999) 202–205.

    Google Scholar 

  44. S. Roy, M. Matlosz and D. Landolt, “Effect of Corrosion on the Composition of Pulse-Plated Cu-Ni Alloys”, J. Electrochem. Soc., 141, (1994) 1509–1517.

    Article  CAS  Google Scholar 

  45. S. Roy and D. Landolt, “Effect of Off-Time on the Composition of Pulse Plated Cu-Ni Alloys”, J. Electrochem. Soc., 142, (1995) 3021–3027.

    Article  CAS  Google Scholar 

  46. P. E. Bradley and D. Landolt, “A Surface Coverage Model for Pulse Plating of Binary Alloys Exhibiting a Displacement Reaction” J. Electrochem. Acta, 42, (1997) 993–1003.

    Article  CAS  Google Scholar 

  47. E. Chaissang, “In-Situ Mass Changes and Stress Measurements in Cu/Fe20Ni80 Electrodeposited Multilayers” J. Electrochem. Soc., 144, (1997) L328–L330.

    Article  Google Scholar 

  48. E. Chaissang, A. Morrone and J. E. Schmidt, “Nanometric Cu-Co Multilayers Electrodeposited on Indium-Tin Oxide Glass” J. Electrochem. Soc., 146, (1999) 1794–1797.

    Article  Google Scholar 

  49. P. E. Bradley and D. Landolt, “Pulse Plating of Copper Cobalt Alloys” Electrochim. Acta, 45, (1999) 1077–1087.

    Article  CAS  Google Scholar 

  50. T. P. Moffat, “Electrochemical Production of Single-Crystal Cu-Ni Strained-Layer Superlattices on Cu(100)”, J. Electrochem. Soc., 142 (1995) 3767–3770.

    Article  CAS  Google Scholar 

  51. A. Cziráki, L. Péter, B. Arnold, J. Thomas, H. D. Bauer, K. Wetzig and I. Bakonyi, “Structural Evolution During Growth of Electrodeposited Co-Cu/Cu Multilayers with Giant Magnetoresistance” Thin Solid Films, 424, (2003) 229–238.

    Article  Google Scholar 

  52. Ch. Bonhôte and D. Landolt, “Microstructure of Ni-Cu Multilayers Electrodeposited from a Citrate Electrolyte”, Electrochim. Acta, 42, (1997) 2407–2417.

    Article  Google Scholar 

  53. M. Shima, L. Salamanca-Riba and T. P. Moffat, “Dissolution of Artifically Structured Materials”, Electrochem. Solid-State Lett., 2 (1999) 271–274.

    Article  CAS  Google Scholar 

  54. S. M. S. I. Dulal, E. A. Charles and S. Roy, “Dissolution from Electrodeposited Copper-Cobalt-Copper Sandwiches” J. Appl. Electrochem., 34, (2004) 151–158.

    Article  CAS  Google Scholar 

  55. J. J. Kelley, P.E. Bradley and D. Landolt, “Additive Effects during Pulsed Deposition of Cu-Co Nanostructures”, J. Electrochem. Soc., 147, (2000) 2975–2980.

    Article  Google Scholar 

  56. J. J. Kelley, M. Cantoni and D. Landolt, “Three Dimensional Strcuturing of Electrodeposited Cu-Co Multilayer Alloys” J. Electrochem. Soc., 148, (2001) C620–C626.

    Article  Google Scholar 

  57. S. Validzadeh, G. Holmbom and P. Leisner, “Electrodeposition of Cobalt-Silver Multilayers” Surf. Coatings Technol., 105 (1998) 213–217.

    Article  Google Scholar 

  58. S. Valizadeh, E. B. Svedberg and P. Leisner, “Electrodeposition of Compositionally Modulated Au/Co Alloy Layers” J. Appl. Electrochem., 32 (2002) 97–104.

    Article  CAS  Google Scholar 

  59. Todd Green, A. E. Russell and S. Roy, “The Development of a Stable Citrate Electrolyte for the Electrodeposition of Copper-Nickel Alloys” J. Electrochem. Soc., 145, (1998) 875–881.

    Google Scholar 

  60. W. R. A. Meuleman and S. Roy, “Electrochemical Characterisation of Copper Deposition from Citrate Solutions” PV 99-33, Ed M. Matlosz and D. Landolt, The Electrochemical Society, Inc., (2000) Pennington, N.J., USA, pp 61–70.

    Google Scholar 

  61. L. Péter, Z. Kupay, A. Cziráki, J. Pádár, J. Tóth and I. Bakonyi, “Additive Effects in MultilayerElectrodepositon: Properties of Co-Cu/Cu Multilayers Deposited with NaCl Additive”, J. Phys. Chem., B, 105, (2001) 10867–10873.

    Article  Google Scholar 

  62. V. Weinacht, L. Péter, J. Tóth, J. Pádár, Zs Kerner, C. M. Schneider and I Bakonyi, “Giant Magnetoresistance in Co-Cu/Cu Multilayers Prepared by Various Electrodeposition Modes”, J. Electrochem. Soc., 150, (2003) C507–C515.

    Article  Google Scholar 

  63. W. R. A. Meuleman, S. Roy, L. Péter and I. Varga, “Effect of Current and Potential Waveforms on Sublayer Thickness of Electrodeposited Copper Nickel Multilayers” J. Electrochem. Soc., 151, (2002) C479–C486.

    Article  Google Scholar 

  64. S. Roy, Y. Gupte and T. A. Green, “Flow Cell Design for Metal Deposition at Recessed Circular Electrodes and Wafers, Chem. Eng. Sci., 56, (2001) 5025–5035.

    Article  CAS  Google Scholar 

  65. W. R. A. Meuleman, S. Roy, L. Péter and I. Bakonyi, “Effect of Current and Potential Waveforms on GMR Characteristics of Electrodeposited Ni(Cu)/Cu Mutlilayers”, J. Electrochem. Soc., 149, (2002) C479–C486.

    Article  CAS  Google Scholar 

  66. S. M. S. I Dulal, E. A. Charles and S. Roy, “Characterisation of Co-Ni(Cu)/Cu Multilayers Deposited from a Citrate Electrolyte in a Flow Channel Cell” Electrochim. Acta, 49 (2004) 2041–2049.

    Article  CAS  Google Scholar 

  67. G. Nabiyouni, O. I. Kasyutich, S. Roy and W. Schwarzacher, “Co-Ni-Cu/ Cu Multilayers Electrodeposited Using a Channel Flow Cell” J. Electrochem. Soc. 149, (2002) C218–C222.

    Article  CAS  Google Scholar 

  68. L. Péter, Q. Liu, Z. Kerner and I. Bakonvi, “Relevance of Potentiodynamic Method in Parameter Selection for Pulse Plating of Co-Cu/Cu Multilayers”, Electrochim. Acta, 49 (2004) 1513–1526.

    Google Scholar 

  69. L. Péter, A. Cziráki, L. Pogány, Z. Kupay, I. Bakonyi, M. Uhlemann, M. Herrich, B. Arnold, T. Bauer and K. Wetzig, “Microstructure and Giant Magnetoresistance of Electrodeposited Co-Cu/Cu Multilayers” J. Electrochem. Soc., 148 (2001) C168–C176.

    Article  Google Scholar 

  70. M. Alper and W. Schwarzacher, “The Effect of pH Changes on the Giant Magnetoresistance of Electrodeposited Superlattices” J. Electrochem. Soc., 144 (1997), 2346–2352.

    Article  CAS  Google Scholar 

  71. J. A. Switzer, M. J. Shane, R. J. Phillips, “Electrodeposited Ceramic Superlattices” Science, 247, (1990) 444–446.

    Article  CAS  Google Scholar 

  72. J. A. Switzer, R. P. Raffaelle, R. J. Phillips, C.-J. Hung and T. D. Golden, “Scanning Tunnelling Microscopy of Electrodeposited Ceramic Superlattices” Science, 258, (1992) 1918–1921.

    Article  CAS  Google Scholar 

  73. B. W. Gregory, D. W. Suggs and J. L. Stickney, “Conditions for the Deposition of Cd-Te by Electrochemical Atomic Layer Epitaxy”, J. Electrochem. Soc., 138, (1991) 1279–1284.

    Article  CAS  Google Scholar 

  74. L. P. Colletti and J. L. Stickney, “Optimization of the Growth of CdTe Thin Films Formed by Electrochemical Atomic Layer Epitaxy in an Automated Deposition System” J. Electrochem. Soc., 145, (1998) 3594–3602 (1998).

    Article  CAS  Google Scholar 

  75. L. P. Colletti, B. H. Flowers Jr. and J. L. Stickney, “Formation of Thin Films of Cd-Te, Cd-Se, and Cd-S by Electrochemical Atomic Layer Epitaxy” J. Electrochem. Soc., 145, (1998) 1442–1449.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roy, S. (2009). Electrochemical Fabrication of Nanostructured, Compositionally Modulated Metal Multilayers (CMMMs). In: Schmuki, P., Virtanen, S. (eds) Electrochemistry at the Nanoscale. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73582-5_9

Download citation

Publish with us

Policies and ethics