Electrochemical Fabrication of Nanostructured, Compositionally Modulated Metal Multilayers (CMMMs)

Part of the Nanostructure Science and Technology book series (NST)


Compositionally modulated (CM) materials started attracting attention when it was found that they had unusual mechanical [1, 2], magnetic [3–5], electronic [5], and corrosion properties [6–9]. Nanostructured, compositionally modulated materials usually consist of stacks of two or three different metals, metal oxides, ceramics, as shown in Fig. 1, which have significantly different properties.


Noble Metal Copper Layer Displacement Reaction Concentration Boundary Layer Partial Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Tsalakos and A. F Jankowski, “Mechanical Properties of Composition-Modulated Metallic Foils” Ann. Rev. Mater. Sci., 16, (1986) 293–313.CrossRefGoogle Scholar
  2. 2.
    T. Foecke and D. S. Lashmore, “Mechanical Behaviour of Compositionally Modulated Alloys” Scripta Metallurgica et Materialia, 27, (1992) 651–656.CrossRefGoogle Scholar
  3. 3.
    R. D. Schull and L. H. Benett, “Nanocomposite Magnetic Materials” Nanostructured Materials, 1 (1992) 83–88.CrossRefGoogle Scholar
  4. 4.
    M. Alper, K. Attenborough, R. Hart, S. J. Lane, D. S. Lashmore, C. Younes and W. Schwarzacher, “Giant Magnetoresistance in Electrodeposited Superlattices”, Appl. Phys. Lett., 63–15 (1993), 2144–2146.CrossRefGoogle Scholar
  5. 5.
    J. Tóth, L. F. Kiss, E. Tóth-Kádár, A. Dinia, V. Pierron-Bohnes and I. Bakonyi, “Giant Magnetoresistance and Magnetic Properties of Electrodeposited Ni81Cu19/Cu Multilayers” J. Magnetism Magnetic Mater., 198–199, (1999) 243–245.CrossRefGoogle Scholar
  6. 6.
    M. E. Bahrololoom, D. R. Gabe and G. D. Wilcox, “Development of a Bath for Electrodeposition of Zinc-Cobalt Compositionally Modulated Alloy Multilayered Coatings”, J. Electrochem. Soc., 150–3 (2003) C144–C151.CrossRefGoogle Scholar
  7. 7.
    J. D. Jensen, “Engineering Metal Microstructures: Process-Microstructure-Property Relationships for Electrodeposits”, Dissertation no. 784, Linkoping Studies in Science and Technology, Linkoping Universitet, SE-581 83 Linkoping, Sweden. ISBN: 91-7373-458-6.Google Scholar
  8. 8.
    J. D. Jensen, D. R. Gabe and G. D. Wilcox, “The Practical Realisation of Zinc-Iron CMA Coatings”, Surf. Coatings Tech., 105 (1998) 240–250.CrossRefGoogle Scholar
  9. 9.
    J. D. Jensen, G. W. Critchlow and D. R. Gabe, “A Study on Zinc-Iron Alloy Electrodeposition from a Chloride Electrolyte” Trans. Inst. Met. Finish., 76–5 (1998) 187–191.Google Scholar
  10. 10.
    S. K. J. Lenczowski, C. Schönenberger, M. A. M. Gijs and W. J. M. Jonge, “Giant Magnetoresistance of Electrodeposited Co/Cu Coatings” J. Magnetism Magnetic Mater., 148 (1995) 455–465.CrossRefGoogle Scholar
  11. 11.
    A. Blondel, J. P. Meier, B. Doudin and J.-Ph. Ansermet, “Giant Magnetoresistance of Nanowires of Multilayers” Appl. Phys. Lett. 65 (1994) 3019–3021.CrossRefGoogle Scholar
  12. 12.
    Á. Cziraki, L. Péter, V. Weihnacht, J. Tóth, E. Simon, J. Pádár, L. Pogány, C. M. Schneider, T. Gemming, K. Wetzig, G. Tichy and I. Bakoyi, “Structure and Giant Magnetoresistance Behaviour of Co-Cu/Cu Multilayers Electrodeposited Under Various Conditions”, J. Nanosci. Nanotechnol., 6–7, (2006) 2000–2012.CrossRefGoogle Scholar
  13. 13.
    W. Schwarzacher and D. S. Lashmore, “Giant Magnetoresistance in Electrodeposited Films” IEEE Trans. On Magnetics, 32 (1996) 3133–3153.CrossRefGoogle Scholar
  14. 14.
    J. P. Celis, D. Drees, M. Z. Huq, P. Q. Wu and M. De Bonte, “Hybrid Processes – a Versatile Technique to Match Process Requirements and Coating Needs” Surf. Coating. Tech., 113 (1999) 165–181.CrossRefGoogle Scholar
  15. 15.
    Y. D Gamburg, “Electrodeposition of Alloys with Composition Modulated over Their Thickness: A Review”, Transl. from Electrokhimiya, 37–6, (2001) 686–692.Google Scholar
  16. 16.
    W. Blum, Trans. A. Electrochem. Soc., 40 (1921) 307–320.Google Scholar
  17. 17.
    C. Ogden, “High Strength Composite Copper-Nickel Electrodeposits” Plat. Surf. Finishing, 73, (1986) 130–134.Google Scholar
  18. 18.
    L. M. Goldman, B. Blancpain, F. Spaepen, “Short Wavelength Compositionally Modulated Ni/Ni-P Films Prepared by Electrodeposition”, J. Appl. Phys., 60, (1986) 1374–1376.CrossRefGoogle Scholar
  19. 19.
    L. M. Goldman, C. A. Ross, W. Ohashi, D. Wu and F. Spaepen, “New Dual Bath Technique for Electrodeposition of Short Repeat Length Multilayers”, Appl. Phys. Lett., 55–21, (1989) 2182–2184.CrossRefGoogle Scholar
  20. 20.
    C. A. Ross, L. M. Goldman and F. Spaepen, “An Electrodeposition Technique for Producing Multilayers of Nickel-Phosphorus and Other Alloys”, J. Electrochem. Soc., 140, (1993), 91–98.CrossRefGoogle Scholar
  21. 21.
    C. Ross, “Electrodeposited Multilayer Thin Films”, Annu. Rev. Mater. Sci., 24, (1994) 159–188.CrossRefGoogle Scholar
  22. 22.
    G. Wouters, J.-P. Celis and J. R. Roos, “The Electrocrystallisation of Compositionally Modulated Multilayers of Tin and Amorphous Nickel-Phosphorus”, J. Electrochem. Soc., 140, (1993) 3639–3643.CrossRefGoogle Scholar
  23. 23.
    G. Wouters, M. Bratoeva, J.-P. Celis and J. R. Roos, “Electrochemical Diagnostic of Bright Tin Deposition in View of the Electrolytic Synthesis of Ni-P/Sn Multilayers”, J. Electrochem. Soc., 141, (1994) 397–401.CrossRefGoogle Scholar
  24. 24.
    A. S. M. A. Haseeb, J.-P. Celis and J. R. Roos, “Dual Bath Electrodeposition of Cu/Ni Compositionally Modulated Multilayers”, J. Electrochem. Soc., 141, (1994) 230–237.CrossRefGoogle Scholar
  25. 25.
    P. T. Tang, P. Leisner, P. Møller, C. Neilsen and D. M. Nabirani, “Dual Bath Plating Composition Modulated Alloys (CMA) Based on a Newly Developed Computer Controlled Plating System”, SUR/FIN’94, June 20–23 (1994), Indianapolis.Google Scholar
  26. 26.
    D. M. A, Nabirani, P. T. Tang and P. Leisner, “The Electrolytic Plating of Compositionally Modulated Alloys and Laminated Metal Nano-structures Based on an Automated Computer-Controlled Dual-Bath System”, Nanotechnology, 7, (1996) 134–143.CrossRefGoogle Scholar
  27. 27.
    A. Brenner, “Electrodeposition of Alloys” Vol. II, p. 589, Academic Press, New York (1963).Google Scholar
  28. 28.
    U. Cohen, K. R. Walton and R. Sard, “Electroplating of Cyclic Multilayered Alloy Plating for Electrical Contact Applications”, J. Electrochem. Soc., 130, (1983). 1987–1995.CrossRefGoogle Scholar
  29. 29.
    J. Yahalom and O. Zadok, “Formation of Composition-Modulated Alloys by Electrodeposition” J. Mater. Sci., 22, (1987) 499–503.CrossRefGoogle Scholar
  30. 30.
    J. Yahalom and O. Zadok, “Method for the Production of Alloys Possessing High Elastic Modulus and Improved Magnetic Properties by Electrodeposition” US Patent No. 4652348 (1987).Google Scholar
  31. 31.
    J. Yahalom, D. F. Tessier, R. S. Timsit, A. M. Rosenfeld, D. F. Mitchell and P. T. Robinson, “Structure of Composition-Modulated Cu/Ni Thin Films Prepared by Electrodeposition” J. Mater. Res., 4, (1989) 755–758.CrossRefGoogle Scholar
  32. 32.
    D. S. Lashmore and M. P. Dariel, “Electrodeposited Cu-Ni Textured Superlattices” J. Electrochem. Soc., 135, (1988) 1218–1221.CrossRefGoogle Scholar
  33. 33.
    M. Dariel, L. H. Bennett, D. S. Lashmore, P. Lubitz, M. Rubinstein, W. L. Lechter and M. Z. Hartford, “Properties of Electrodeposited Co-Cu Multilayer Structures”, J. Appl. Phys., 61–18, (1987), 4067–4069.CrossRefGoogle Scholar
  34. 34.
    D. Tench and J. White, “Tensile Properties of Nanostructured Ni-Cu Multilayered Materials Prepared by Electrodeposition” J. Electrochem. Soc., 138 (1991) 3757–3758.CrossRefGoogle Scholar
  35. 35.
    D. M. Tench and J. T. White, “Considerations in Electrodeposition of Compositionally Modulated Alloys” J. Electrochem. Soc., 137, (1990) 3061–3066.CrossRefGoogle Scholar
  36. 36.
    D. M. Tench and J. T. White, “A New Periodic Displacement Method Applied to Electrodeposition of Cu-Ag Alloys” J. Electrochem. Soc., 139, (1992) 443–446.CrossRefGoogle Scholar
  37. 37.
    A. R. Despic and V. D. Jovic, “Electrochemical Formation of Laminar Deposits of Controlled Structure and Composition: 1. Single Current Pulse Galvanostatic Technique” J. Electrochem. Soc., 134, (1987) 3004–3011.CrossRefGoogle Scholar
  38. 38.
    A. R. Despic, V. D. Jovic and S. Spaic, “Electrochemical Formation of Laminar Deposits of Controlled Structure and Composition: 1. Dual Current Pulse Galvanostatic Technique” J. Electrochem. Soc., 136, (1989) 1651–1657.CrossRefGoogle Scholar
  39. 39.
    D. T. Schwartz, P. Stroeve and B. G. Higgins, “Electrodeposition of Composition-Modulated Alloys in Fluctuating Flow Field” AIChE J., 35, (1989) 1315–1327.CrossRefGoogle Scholar
  40. 40.
    D. T. Schwartz, “Multilayered Alloys Induced by Fluctuating Flow” J. Electrochem. Soc., 138, (1989) 53C–56C.CrossRefGoogle Scholar
  41. 41.
    S. D. Leith and D. T. Schwartz, “Flow-Induced Composition Modulated Ni-Fe Thin Films with Nanometer-Scale Wavelengths” J. Electrochem. Soc., 143 (1996) 873–878.CrossRefGoogle Scholar
  42. 42.
    J. A. Medina and D. T. Schwartz, “Electrodeposition of Flow Induced Composition Modulated NiFe Alloys in the Uniform Injection Cell” Electrochim. Acta, 42, (1997) 2679–2684.CrossRefGoogle Scholar
  43. 43.
    S. Roy, “An Analytical Equation to Compute the Composition of Pulse Plated Binary Alloys” Plat. Surf. Finish., 76 (1999) 202–205.Google Scholar
  44. 44.
    S. Roy, M. Matlosz and D. Landolt, “Effect of Corrosion on the Composition of Pulse-Plated Cu-Ni Alloys”, J. Electrochem. Soc., 141, (1994) 1509–1517.CrossRefGoogle Scholar
  45. 45.
    S. Roy and D. Landolt, “Effect of Off-Time on the Composition of Pulse Plated Cu-Ni Alloys”, J. Electrochem. Soc., 142, (1995) 3021–3027.CrossRefGoogle Scholar
  46. 46.
    P. E. Bradley and D. Landolt, “A Surface Coverage Model for Pulse Plating of Binary Alloys Exhibiting a Displacement Reaction” J. Electrochem. Acta, 42, (1997) 993–1003.CrossRefGoogle Scholar
  47. 47.
    E. Chaissang, “In-Situ Mass Changes and Stress Measurements in Cu/Fe20Ni80 Electrodeposited Multilayers” J. Electrochem. Soc., 144, (1997) L328–L330.CrossRefGoogle Scholar
  48. 48.
    E. Chaissang, A. Morrone and J. E. Schmidt, “Nanometric Cu-Co Multilayers Electrodeposited on Indium-Tin Oxide Glass” J. Electrochem. Soc., 146, (1999) 1794–1797.CrossRefGoogle Scholar
  49. 49.
    P. E. Bradley and D. Landolt, “Pulse Plating of Copper Cobalt Alloys” Electrochim. Acta, 45, (1999) 1077–1087.CrossRefGoogle Scholar
  50. 50.
    T. P. Moffat, “Electrochemical Production of Single-Crystal Cu-Ni Strained-Layer Superlattices on Cu(100)”, J. Electrochem. Soc., 142 (1995) 3767–3770.CrossRefGoogle Scholar
  51. 51.
    A. Cziráki, L. Péter, B. Arnold, J. Thomas, H. D. Bauer, K. Wetzig and I. Bakonyi, “Structural Evolution During Growth of Electrodeposited Co-Cu/Cu Multilayers with Giant Magnetoresistance” Thin Solid Films, 424, (2003) 229–238.CrossRefGoogle Scholar
  52. 52.
    Ch. Bonhôte and D. Landolt, “Microstructure of Ni-Cu Multilayers Electrodeposited from a Citrate Electrolyte”, Electrochim. Acta, 42, (1997) 2407–2417.CrossRefGoogle Scholar
  53. 53.
    M. Shima, L. Salamanca-Riba and T. P. Moffat, “Dissolution of Artifically Structured Materials”, Electrochem. Solid-State Lett., 2 (1999) 271–274.CrossRefGoogle Scholar
  54. 54.
    S. M. S. I. Dulal, E. A. Charles and S. Roy, “Dissolution from Electrodeposited Copper-Cobalt-Copper Sandwiches” J. Appl. Electrochem., 34, (2004) 151–158.CrossRefGoogle Scholar
  55. 55.
    J. J. Kelley, P.E. Bradley and D. Landolt, “Additive Effects during Pulsed Deposition of Cu-Co Nanostructures”, J. Electrochem. Soc., 147, (2000) 2975–2980.CrossRefGoogle Scholar
  56. 56.
    J. J. Kelley, M. Cantoni and D. Landolt, “Three Dimensional Strcuturing of Electrodeposited Cu-Co Multilayer Alloys” J. Electrochem. Soc., 148, (2001) C620–C626.CrossRefGoogle Scholar
  57. 57.
    S. Validzadeh, G. Holmbom and P. Leisner, “Electrodeposition of Cobalt-Silver Multilayers” Surf. Coatings Technol., 105 (1998) 213–217.CrossRefGoogle Scholar
  58. 58.
    S. Valizadeh, E. B. Svedberg and P. Leisner, “Electrodeposition of Compositionally Modulated Au/Co Alloy Layers” J. Appl. Electrochem., 32 (2002) 97–104.CrossRefGoogle Scholar
  59. 59.
    Todd Green, A. E. Russell and S. Roy, “The Development of a Stable Citrate Electrolyte for the Electrodeposition of Copper-Nickel Alloys” J. Electrochem. Soc., 145, (1998) 875–881.Google Scholar
  60. 60.
    W. R. A. Meuleman and S. Roy, “Electrochemical Characterisation of Copper Deposition from Citrate Solutions” PV 99-33, Ed M. Matlosz and D. Landolt, The Electrochemical Society, Inc., (2000) Pennington, N.J., USA, pp 61–70.Google Scholar
  61. 61.
    L. Péter, Z. Kupay, A. Cziráki, J. Pádár, J. Tóth and I. Bakonyi, “Additive Effects in MultilayerElectrodepositon: Properties of Co-Cu/Cu Multilayers Deposited with NaCl Additive”, J. Phys. Chem., B, 105, (2001) 10867–10873.CrossRefGoogle Scholar
  62. 62.
    V. Weinacht, L. Péter, J. Tóth, J. Pádár, Zs Kerner, C. M. Schneider and I Bakonyi, “Giant Magnetoresistance in Co-Cu/Cu Multilayers Prepared by Various Electrodeposition Modes”, J. Electrochem. Soc., 150, (2003) C507–C515.CrossRefGoogle Scholar
  63. 63.
    W. R. A. Meuleman, S. Roy, L. Péter and I. Varga, “Effect of Current and Potential Waveforms on Sublayer Thickness of Electrodeposited Copper Nickel Multilayers” J. Electrochem. Soc., 151, (2002) C479–C486.CrossRefGoogle Scholar
  64. 64.
    S. Roy, Y. Gupte and T. A. Green, “Flow Cell Design for Metal Deposition at Recessed Circular Electrodes and Wafers, Chem. Eng. Sci., 56, (2001) 5025–5035.CrossRefGoogle Scholar
  65. 65.
    W. R. A. Meuleman, S. Roy, L. Péter and I. Bakonyi, “Effect of Current and Potential Waveforms on GMR Characteristics of Electrodeposited Ni(Cu)/Cu Mutlilayers”, J. Electrochem. Soc., 149, (2002) C479–C486.CrossRefGoogle Scholar
  66. 66.
    S. M. S. I Dulal, E. A. Charles and S. Roy, “Characterisation of Co-Ni(Cu)/Cu Multilayers Deposited from a Citrate Electrolyte in a Flow Channel Cell” Electrochim. Acta, 49 (2004) 2041–2049.CrossRefGoogle Scholar
  67. 67.
    G. Nabiyouni, O. I. Kasyutich, S. Roy and W. Schwarzacher, “Co-Ni-Cu/ Cu Multilayers Electrodeposited Using a Channel Flow Cell” J. Electrochem. Soc. 149, (2002) C218–C222.CrossRefGoogle Scholar
  68. 68.
    L. Péter, Q. Liu, Z. Kerner and I. Bakonvi, “Relevance of Potentiodynamic Method in Parameter Selection for Pulse Plating of Co-Cu/Cu Multilayers”, Electrochim. Acta, 49 (2004) 1513–1526.Google Scholar
  69. 69.
    L. Péter, A. Cziráki, L. Pogány, Z. Kupay, I. Bakonyi, M. Uhlemann, M. Herrich, B. Arnold, T. Bauer and K. Wetzig, “Microstructure and Giant Magnetoresistance of Electrodeposited Co-Cu/Cu Multilayers” J. Electrochem. Soc., 148 (2001) C168–C176.CrossRefGoogle Scholar
  70. 70.
    M. Alper and W. Schwarzacher, “The Effect of pH Changes on the Giant Magnetoresistance of Electrodeposited Superlattices” J. Electrochem. Soc., 144 (1997), 2346–2352.CrossRefGoogle Scholar
  71. 71.
    J. A. Switzer, M. J. Shane, R. J. Phillips, “Electrodeposited Ceramic Superlattices” Science, 247, (1990) 444–446.CrossRefGoogle Scholar
  72. 72.
    J. A. Switzer, R. P. Raffaelle, R. J. Phillips, C.-J. Hung and T. D. Golden, “Scanning Tunnelling Microscopy of Electrodeposited Ceramic Superlattices” Science, 258, (1992) 1918–1921.CrossRefGoogle Scholar
  73. 73.
    B. W. Gregory, D. W. Suggs and J. L. Stickney, “Conditions for the Deposition of Cd-Te by Electrochemical Atomic Layer Epitaxy”, J. Electrochem. Soc., 138, (1991) 1279–1284.CrossRefGoogle Scholar
  74. 74.
    L. P. Colletti and J. L. Stickney, “Optimization of the Growth of CdTe Thin Films Formed by Electrochemical Atomic Layer Epitaxy in an Automated Deposition System” J. Electrochem. Soc., 145, (1998) 3594–3602 (1998).CrossRefGoogle Scholar
  75. 75.
    L. P. Colletti, B. H. Flowers Jr. and J. L. Stickney, “Formation of Thin Films of Cd-Te, Cd-Se, and Cd-S by Electrochemical Atomic Layer Epitaxy” J. Electrochem. Soc., 145, (1998) 1442–1449.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Chemical Engineering and Advanced MaterialsNewcastle UniversityNew CastleUK

Personalised recommendations