Skip to main content

The Electrochemistry of Porous Semiconductors

  • Chapter
  • First Online:
  • 1771 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The porous semiconductor electrode provides an interesting example for the theme of this volume: electrochemistry at the nanoscale. In porous etching, the anodic reaction can be considered to occur at an array of “nanoelectrodes”, the pore tips, while the remainder of the porous matrix remains electrochemically inactive. In this case, conditions are clearly different from those at a macroscopic surface. Porous electrodes can also exhibit another aspect, one in which charge transfer is not restricted to the pore fronts; instead, the whole internal surface of the matrix acts as an electrode with a very large area but with a reduced “thickness”, corresponding to the dimensions of the pore wall. Such small dimensions, which can even lead to size quantization, play a critical role in the electrochemistry. In this chapter, we consider the factors that decide whether the electrochemical reaction occurs exclusively at the pore fronts or at the whole internal surface of the porous layer. We review the electrochemistry of the two cases and related chemical and physical properties. In addition, we compare some results of porous-etched single crystals with those of nanoporous electrodes made by deposition from colloidal suspension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. J. Barton, L. M. Bull, W. G. Klemperer, D. A. Loy, B. McEnaney, M. Misono, P. A. Monson, G. Pez, G. W. Scherer, J. C. Vartuli, and O. M. Yaghi, Chem. Mat., 11, 2633 (1999).

    Article  CAS  Google Scholar 

  2. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys., 82, 909 (1997).

    Article  CAS  Google Scholar 

  3. S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, (1980).

    Book  Google Scholar 

  4. L. M. Peter, D. J. Riley, and R. I. Wielgosz, Appl. Phys. Lett., 66, 2355 (1995).

    Article  CAS  Google Scholar 

  5. A. L. Roest, J. J. Kelly, D. Vanmaekelbergh, and E. A. Meulenkamp, Phys. Rev. Lett, 89, 036801 (2002).

    Article  CAS  Google Scholar 

  6. D. Yu, C. J. Wang, and P. Guyot-Sionnest, Science, 300, 1277 (2003).

    Article  CAS  Google Scholar 

  7. A. J. Houtepen and D. Vanmaekelbergh, J. Phys. Chem. B, 109, 19634 (2005).

    Article  CAS  Google Scholar 

  8. S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed., Wiley, New York, (1981).

    Google Scholar 

  9. J. J. Kelly and D. Vanmaekelbergh, Electrochim. Acta, 43, 2773 (1998).

    Article  CAS  Google Scholar 

  10. B. H. Erné, D. Vanmaekelbergh, and J. J. Kelly, Adv. Mater., 7, 739 (1995).

    Article  Google Scholar 

  11. B. H. Erné, D. Vanmaekelbergh, and J. J. Kelly, J. Electrochem. Soc., 143, 305 (1996).

    Article  Google Scholar 

  12. J. van de Lagemaat, M. Plakman, D. Vanmaekelbergh, and J. J. Kelly, Appl. Phys. Lett., 69, 2246 (1996).

    Article  Google Scholar 

  13. A. O. Konstantinov, C. I. Harris, and E. Janzen, Appl. Phys. Lett., 65, 2699 (1994).

    Article  CAS  Google Scholar 

  14. D. Vanmaekelbergh, A. Koster, and F. I. Marin, Adv. Mater., 9, 575 (1997).

    Article  CAS  Google Scholar 

  15. J. N. Chazalviel, R. B. Wehrspohn, and F. Ozanam, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 69, 1 (2000).

    Google Scholar 

  16. E. S. Kooij and D. Vanmaekelbergh, J. Electrochem. Soc., 144, 1296 (1997).

    Article  CAS  Google Scholar 

  17. H. Foll, M. Christophersen, J. Carstensen, and G. Hasse, Materials Science & Engineering, 39, 93 (2002).

    Article  Google Scholar 

  18. M. J. J. Theunissen, J. Electrochem. Soc., 119, 351 (1972).

    Article  CAS  Google Scholar 

  19. M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, J. Cryst. Growth, 73, 622 (1985).

    Article  CAS  Google Scholar 

  20. R. L. Smith and S. D. Collins, J. Appl. Phys., 71, R1 (1992).

    Article  CAS  Google Scholar 

  21. Y. Kang and J. Jorne, J. Electrochem. Soc., 140, 2258 (1993).

    Article  CAS  Google Scholar 

  22. H. Foll, S. Langa, J. Carstensen, M. Christophersen, and I. M. Tiginyanu, Adv. Mater., 15, 183 (2003).

    Article  CAS  Google Scholar 

  23. X. G. Zhang, J. Electrochem. Soc., 151, C69 (2004).

    Article  CAS  Google Scholar 

  24. V. Lehmann, Electrochemistry of Silicon; instrumantation, science, materials and applications, Wiley-VCH, Weinheim, (2002).

    Google Scholar 

  25. J. J. Kelly and D. Vanmaekelbergh, Porous etched semiconductors; formation and characterization, Chapter 4 of The electrochemistry of nanomaterials, Wiley-VCH, Weinheim (Germany), (2001).

    Google Scholar 

  26. X. G. Zhang, Electrochemistry of silicon and its oxide, Kluwer Academic/Plenum Publishers, Dordrecht, (2001).

    Google Scholar 

  27. V. Lehmann, R. Stengl, and A. Luigart, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 69, 11 (2000).

    Google Scholar 

  28. P. C. Searson, J. M. Macaulay, and F. M. Ross, J. Appl. Phys., 72, 253 (1992).

    Article  CAS  Google Scholar 

  29. X. G. Zhang, J. Electrochem. Soc., 138, 3750 (1991).

    Article  CAS  Google Scholar 

  30. S. Mahadevan, S. M. Hardas, and G. Suryan, Phys. Status Solidi A, 8, 335 (1971).

    Article  CAS  Google Scholar 

  31. J. Gómez Rivas, A. Lagendijk, R. W. Tjerkstra, D. Vanmaekelbergh, and J. J. Kelly, Appl. Phys. Lett., 80, 4498 (2002).

    Article  Google Scholar 

  32. A. Hamamatsu, C. Kaneshiro, H. Fujikura, and H. Hasegawa, J. Electroanal. Chem., 473, 223 (1999).

    Article  CAS  Google Scholar 

  33. R. W. Tjerkstra, J. Gómez Rivas, D. Vanmaekelbergh, and J. J. Kelly, Electrochem. Solid State Lett., 5, G32 (2002).

    Article  CAS  Google Scholar 

  34. A. F. van Driel, B. P. J. Bret, D. Vanmaekelbergh, and J. J. Kelly, Surf. Sci., 529, 197 (2003).

    Article  Google Scholar 

  35. M. Gershenzon and R. M. Mikulyak, J. Appl. Phys., 32, 1338 (1961).

    Article  CAS  Google Scholar 

  36. A. F. van Driel, D. Vanmaekelbergh, and J. J. Kelly, Appl. Phys. Lett., 84, 3852 (2004).

    Article  Google Scholar 

  37. J. Wloka, K. Mueller, and P. Schmuki, Electrochem. Solid State Lett., 8, B72 (2005).

    Article  CAS  Google Scholar 

  38. J. Wloka, D. J. Lockwood, and P. Schmuki, Chem. Phys. Lett., 414, 47 (2005).

    Article  CAS  Google Scholar 

  39. T. Takizawa, S. Arai, and M. Nakahara, Jpn. J. Appl. Phys. Part 2 – Lett., 33, L643 (1994).

    Article  CAS  Google Scholar 

  40. S. Langa, I. M. Tiginyanu, J. Carstensen, M. Christophersen, and H. Foll, Appl. Phys. Lett., 82, 278 (2003).

    Article  CAS  Google Scholar 

  41. S. Langa, I. M. Tiginyanu, J. Carstensen, M. Christophersen, and H. Foll, Electrochem. Solid State Lett., 3, 514 (2000).

    Article  CAS  Google Scholar 

  42. S. Langa, M. Christophersen, J. Carstensen, I. M. Tiginyanu, and H. Foll, Phys. Status Solidi A-Appl. Res., 197, 77 (2003).

    Article  CAS  Google Scholar 

  43. H. J. Lewerenz, J. Stumper, and L. M. Peter, Phys Rev Lett, 61, 1989 (1988).

    Article  CAS  Google Scholar 

  44. A. Uhlir, Bell Syst. Technol., 35, 333 (1956).

    CAS  Google Scholar 

  45. V. Lehmann, J. Electrochem. Soc., 140, 2836 (1993).

    Article  CAS  Google Scholar 

  46. V. Lehmann and H. Foll, J. Electrochem. Soc., 137, 653 (1990).

    Article  CAS  Google Scholar 

  47. S. Ottow, V. Lehmann, and H. Foll, J. Electrochem. Soc., 143, 385 (1996).

    Article  CAS  Google Scholar 

  48. P. Kleimann, J. Linnros, and S. Petersson, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 69, 29 (2000).

    Google Scholar 

  49. V. Lehmann and U. Gruning, Thin Solid Films, 297, 13 (1997).

    Article  CAS  Google Scholar 

  50. S. Ronnebeck, J. Carstensen, S. Ottow, and H. Foll, Electrochem. Solid State Lett., 2, 126 (1999).

    Article  CAS  Google Scholar 

  51. S. Matthias, F. Muller, C. Jamois, R. B. Wehrspohn, and U. Goesele, Adv. Mater., 16, 2166 (2004).

    Article  CAS  Google Scholar 

  52. S. Matthias, F. Muller, and U. Goesele, J. Appl. Phys., 98, 023524 (2005).

    Article  Google Scholar 

  53. S. Matthias, F. Muller, J. Schilling, and U. Goesele, Appl. Phys. a-Mater, 80, 1391 (2005).

    Article  CAS  Google Scholar 

  54. E. S. Kooij, A. R. Rama, and J. J. Kelly, Surf. Sci., 370, 125 (1997).

    Article  CAS  Google Scholar 

  55. L. T. Canham, W. Y. Leong, M. I. J. Beale, T. I. Cox, and L. Taylor, Appl. Phys. Lett., 61, 2563 (1992).

    Article  CAS  Google Scholar 

  56. L. M. Peter, D. J. Riley, R. I. Wielgosz, P. A. Snow, R. V. Penty, I. H. White, and E. A. Meulenkamp, Thin Solid Films, 276, 123 (1996).

    Article  CAS  Google Scholar 

  57. L. M. Peter, D. J. Riley, and P. A. Snow, Electrochem. Commun., 2, 461 (2000).

    Article  CAS  Google Scholar 

  58. J. J. Kelly, E. S. Kooij, and D. Vanmaekelbergh, Langmuir, 15, 3666 (1999).

    Article  CAS  Google Scholar 

  59. C. J. Wang, B. L. Wehrenberg, C. Y. Woo, and P. Guyot-Sionnest, J. Phys. Chem. B, 108, 9027 (2004).

    Article  CAS  Google Scholar 

  60. E. S. Kooij, K. Butter, and J. J. Kelly, J. Electrochem. Soc., 145, 1232 (1998).

    Article  CAS  Google Scholar 

  61. D. Mills, M. Nahidi, and K. W. Kolasinski, Physica Status Solidi A, 202, 1422 (2005).

    Article  CAS  Google Scholar 

  62. E. Vazsonyi, E. Szilagyi, P. Petrik, Z. E. Horvath, T. Lohner, M. Fried, and G. Jalsovszky, Thin Solid Films, 388, 295 (2001).

    Article  CAS  Google Scholar 

  63. Y. Y. Song, Z. D. Gao, J. J. Kelly, and X. H. Xia, Electrochem. Solid State Lett., 8, C148 (2005).

    Article  CAS  Google Scholar 

  64. C.-H. Wang, Y.-Y. Song, J.-W. Zhao, and X.-H. Xia, Surf. Sci., 600, L38–L42 (2006).

    Google Scholar 

  65. E. S. Kooij, R. W. Despo, F. P. J. Mulders, and J. J. Kelly, J. Electroanal. Chem., 406, 139 (1996).

    Article  Google Scholar 

  66. E. S. Kooij, R. W. Despo, and J. J. Kelly, Appl. Phys. Lett., 66, 2552 (1995).

    Article  CAS  Google Scholar 

  67. M. J. Eddowes, J. Electroanal. Chem., 280, 297 (1990).

    Article  CAS  Google Scholar 

  68. E. K. Propst and P. A. Kohl, J. Electrochem. Soc., 141, 1006 (1994).

    Article  CAS  Google Scholar 

  69. E. A. Ponomarev and C. Levy-Clement, Electrochem. Solid State Lett., 1, 42 (1998).

    Article  CAS  Google Scholar 

  70. R. B. Wehrspohn, J. N. Chazalviel, F. Ozanam, and I. Solomon, Thin Solid Films, 297, 5 (1997).

    Article  CAS  Google Scholar 

  71. R. B. Wehrspohn, J. N. Chazalviel, and F. Ozanam, J. Electrochem. Soc., 145, 2958 (1998).

    Article  CAS  Google Scholar 

  72. V. Lehmann and S. Ronnebeck, J. Electrochem. Soc., 146, 2968 (1999).

    Article  CAS  Google Scholar 

  73. K. J. Chao, S. C. Kao, C. M. Yang, M. S. Hseu, and T. G. Tsai, Electrochem. Solid State Lett., 3, 489 (2000).

    Article  CAS  Google Scholar 

  74. R. B. Wehrspohn, F. Ozanam, and J. N. Chazalviel, J. Electrochem. Soc., 146, 3309 (1999).

    Article  CAS  Google Scholar 

  75. A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, and J. C. Oberlin, J. Electrochem. Soc., 138, 3450 (1991).

    Article  CAS  Google Scholar 

  76. M. Ligeon, F. Muller, R. Herino, F. Gaspard, J. C. Vial, R. Romestain, S. Billat, and A. Bsiesy, J. Appl. Phys., 74, 1265 (1993).

    Article  CAS  Google Scholar 

  77. S. Billat, F. Gaspard, R. Herino, M. Ligeon, F. Muller, F. Romestain, and J. C. Vial, Thin Solid Films, 263, 238 (1995).

    Article  CAS  Google Scholar 

  78. A. Bsiesy, B. Gelloz, F. Gaspard, and F. Muller, J. Appl. Phys., 79, 2513 (1996).

    Article  CAS  Google Scholar 

  79. A. Bsiesy, F. Muller, M. Ligeon, F. Gaspard, R. Herino, R. Romestain, and J. C. Vial, Phys. Rev. Lett, 71, 637 (1993).

    Article  CAS  Google Scholar 

  80. P. M. M. C. Bressers, J. W. J. Knapen, E. A. Meulenkamp, and J. J. Kelly, Appl. Phys. Lett., 61, 108 (1992).

    Article  CAS  Google Scholar 

  81. E. A. Meulenkamp, L. M. Peter, D. J. Riley, and R. I. Wielgosz, J. Electroanal. Chem., 392, 97 (1995).

    Article  Google Scholar 

  82. L. M. Peter and R. I. Wielgosz, Appl. Phys. Lett., 69, 806 (1996).

    Article  CAS  Google Scholar 

  83. G. H. Schoenmakers, R. Waagenaar, and J. J. Kelly, J. Electrochem. Soc., 142, L60 (1995).

    Article  CAS  Google Scholar 

  84. J. J. Kelly, E. S. Kooij, and E. A. Meulenkamp, Electrochim. Acta, 45, 561 (1999).

    Article  CAS  Google Scholar 

  85. Phys. Stat. Sol., 202, 8/9 (2005).

    Google Scholar 

  86. Phys. Stat. Sol., 204, 5/6 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kelly, J.J., van Driel, A. (2009). The Electrochemistry of Porous Semiconductors. In: Schmuki, P., Virtanen, S. (eds) Electrochemistry at the Nanoscale. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73582-5_6

Download citation

Publish with us

Policies and ethics