Advertisement

The Electrochemistry of Porous Semiconductors

  • John J. Kelly
  • A.F. van Driel
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

The porous semiconductor electrode provides an interesting example for the theme of this volume: electrochemistry at the nanoscale. In porous etching, the anodic reaction can be considered to occur at an array of “nanoelectrodes”, the pore tips, while the remainder of the porous matrix remains electrochemically inactive. In this case, conditions are clearly different from those at a macroscopic surface. Porous electrodes can also exhibit another aspect, one in which charge transfer is not restricted to the pore fronts; instead, the whole internal surface of the matrix acts as an electrode with a very large area but with a reduced “thickness”, corresponding to the dimensions of the pore wall. Such small dimensions, which can even lead to size quantization, play a critical role in the electrochemistry. In this chapter, we consider the factors that decide whether the electrochemical reaction occurs exclusively at the pore fronts or at the whole internal surface of the porous layer. We review the electrochemistry of the two cases and related chemical and physical properties. In addition, we compare some results of porous-etched single crystals with those of nanoporous electrodes made by deposition from colloidal suspension.

Keywords

Porous Silicon Porous Layer Pore Wall Minority Carrier Depletion Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. J. Barton, L. M. Bull, W. G. Klemperer, D. A. Loy, B. McEnaney, M. Misono, P. A. Monson, G. Pez, G. W. Scherer, J. C. Vartuli, and O. M. Yaghi, Chem. Mat., 11, 2633 (1999).CrossRefGoogle Scholar
  2. 2.
    A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys., 82, 909 (1997).CrossRefGoogle Scholar
  3. 3.
    S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, (1980).CrossRefGoogle Scholar
  4. 4.
    L. M. Peter, D. J. Riley, and R. I. Wielgosz, Appl. Phys. Lett., 66, 2355 (1995).CrossRefGoogle Scholar
  5. 5.
    A. L. Roest, J. J. Kelly, D. Vanmaekelbergh, and E. A. Meulenkamp, Phys. Rev. Lett, 89, 036801 (2002).CrossRefGoogle Scholar
  6. 6.
    D. Yu, C. J. Wang, and P. Guyot-Sionnest, Science, 300, 1277 (2003).CrossRefGoogle Scholar
  7. 7.
    A. J. Houtepen and D. Vanmaekelbergh, J. Phys. Chem. B, 109, 19634 (2005).CrossRefGoogle Scholar
  8. 8.
    S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed., Wiley, New York, (1981).Google Scholar
  9. 9.
    J. J. Kelly and D. Vanmaekelbergh, Electrochim. Acta, 43, 2773 (1998).CrossRefGoogle Scholar
  10. 10.
    B. H. Erné, D. Vanmaekelbergh, and J. J. Kelly, Adv. Mater., 7, 739 (1995).CrossRefGoogle Scholar
  11. 11.
    B. H. Erné, D. Vanmaekelbergh, and J. J. Kelly, J. Electrochem. Soc., 143, 305 (1996).CrossRefGoogle Scholar
  12. 12.
    J. van de Lagemaat, M. Plakman, D. Vanmaekelbergh, and J. J. Kelly, Appl. Phys. Lett., 69, 2246 (1996).CrossRefGoogle Scholar
  13. 13.
    A. O. Konstantinov, C. I. Harris, and E. Janzen, Appl. Phys. Lett., 65, 2699 (1994).CrossRefGoogle Scholar
  14. 14.
    D. Vanmaekelbergh, A. Koster, and F. I. Marin, Adv. Mater., 9, 575 (1997).CrossRefGoogle Scholar
  15. 15.
    J. N. Chazalviel, R. B. Wehrspohn, and F. Ozanam, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 69, 1 (2000).Google Scholar
  16. 16.
    E. S. Kooij and D. Vanmaekelbergh, J. Electrochem. Soc., 144, 1296 (1997).CrossRefGoogle Scholar
  17. 17.
    H. Foll, M. Christophersen, J. Carstensen, and G. Hasse, Materials Science & Engineering, 39, 93 (2002).CrossRefGoogle Scholar
  18. 18.
    M. J. J. Theunissen, J. Electrochem. Soc., 119, 351 (1972).CrossRefGoogle Scholar
  19. 19.
    M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, J. Cryst. Growth, 73, 622 (1985).CrossRefGoogle Scholar
  20. 20.
    R. L. Smith and S. D. Collins, J. Appl. Phys., 71, R1 (1992).CrossRefGoogle Scholar
  21. 21.
    Y. Kang and J. Jorne, J. Electrochem. Soc., 140, 2258 (1993).CrossRefGoogle Scholar
  22. 22.
    H. Foll, S. Langa, J. Carstensen, M. Christophersen, and I. M. Tiginyanu, Adv. Mater., 15, 183 (2003).CrossRefGoogle Scholar
  23. 23.
    X. G. Zhang, J. Electrochem. Soc., 151, C69 (2004).CrossRefGoogle Scholar
  24. 24.
    V. Lehmann, Electrochemistry of Silicon; instrumantation, science, materials and applications, Wiley-VCH, Weinheim, (2002).Google Scholar
  25. 25.
    J. J. Kelly and D. Vanmaekelbergh, Porous etched semiconductors; formation and characterization, Chapter 4 of The electrochemistry of nanomaterials, Wiley-VCH, Weinheim (Germany), (2001).Google Scholar
  26. 26.
    X. G. Zhang, Electrochemistry of silicon and its oxide, Kluwer Academic/Plenum Publishers, Dordrecht, (2001).Google Scholar
  27. 27.
    V. Lehmann, R. Stengl, and A. Luigart, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 69, 11 (2000).Google Scholar
  28. 28.
    P. C. Searson, J. M. Macaulay, and F. M. Ross, J. Appl. Phys., 72, 253 (1992).CrossRefGoogle Scholar
  29. 29.
    X. G. Zhang, J. Electrochem. Soc., 138, 3750 (1991).CrossRefGoogle Scholar
  30. 30.
    S. Mahadevan, S. M. Hardas, and G. Suryan, Phys. Status Solidi A, 8, 335 (1971).CrossRefGoogle Scholar
  31. 31.
    J. Gómez Rivas, A. Lagendijk, R. W. Tjerkstra, D. Vanmaekelbergh, and J. J. Kelly, Appl. Phys. Lett., 80, 4498 (2002).CrossRefGoogle Scholar
  32. 32.
    A. Hamamatsu, C. Kaneshiro, H. Fujikura, and H. Hasegawa, J. Electroanal. Chem., 473, 223 (1999).CrossRefGoogle Scholar
  33. 33.
    R. W. Tjerkstra, J. Gómez Rivas, D. Vanmaekelbergh, and J. J. Kelly, Electrochem. Solid State Lett., 5, G32 (2002).CrossRefGoogle Scholar
  34. 34.
    A. F. van Driel, B. P. J. Bret, D. Vanmaekelbergh, and J. J. Kelly, Surf. Sci., 529, 197 (2003).CrossRefGoogle Scholar
  35. 35.
    M. Gershenzon and R. M. Mikulyak, J. Appl. Phys., 32, 1338 (1961).CrossRefGoogle Scholar
  36. 36.
    A. F. van Driel, D. Vanmaekelbergh, and J. J. Kelly, Appl. Phys. Lett., 84, 3852 (2004).CrossRefGoogle Scholar
  37. 37.
    J. Wloka, K. Mueller, and P. Schmuki, Electrochem. Solid State Lett., 8, B72 (2005).CrossRefGoogle Scholar
  38. 38.
    J. Wloka, D. J. Lockwood, and P. Schmuki, Chem. Phys. Lett., 414, 47 (2005).CrossRefGoogle Scholar
  39. 39.
    T. Takizawa, S. Arai, and M. Nakahara, Jpn. J. Appl. Phys. Part 2 – Lett., 33, L643 (1994).CrossRefGoogle Scholar
  40. 40.
    S. Langa, I. M. Tiginyanu, J. Carstensen, M. Christophersen, and H. Foll, Appl. Phys. Lett., 82, 278 (2003).CrossRefGoogle Scholar
  41. 41.
    S. Langa, I. M. Tiginyanu, J. Carstensen, M. Christophersen, and H. Foll, Electrochem. Solid State Lett., 3, 514 (2000).CrossRefGoogle Scholar
  42. 42.
    S. Langa, M. Christophersen, J. Carstensen, I. M. Tiginyanu, and H. Foll, Phys. Status Solidi A-Appl. Res., 197, 77 (2003).CrossRefGoogle Scholar
  43. 43.
    H. J. Lewerenz, J. Stumper, and L. M. Peter, Phys Rev Lett, 61, 1989 (1988).CrossRefGoogle Scholar
  44. 44.
    A. Uhlir, Bell Syst. Technol., 35, 333 (1956).Google Scholar
  45. 45.
    V. Lehmann, J. Electrochem. Soc., 140, 2836 (1993).CrossRefGoogle Scholar
  46. 46.
    V. Lehmann and H. Foll, J. Electrochem. Soc., 137, 653 (1990).CrossRefGoogle Scholar
  47. 47.
    S. Ottow, V. Lehmann, and H. Foll, J. Electrochem. Soc., 143, 385 (1996).CrossRefGoogle Scholar
  48. 48.
    P. Kleimann, J. Linnros, and S. Petersson, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 69, 29 (2000).Google Scholar
  49. 49.
    V. Lehmann and U. Gruning, Thin Solid Films, 297, 13 (1997).CrossRefGoogle Scholar
  50. 50.
    S. Ronnebeck, J. Carstensen, S. Ottow, and H. Foll, Electrochem. Solid State Lett., 2, 126 (1999).CrossRefGoogle Scholar
  51. 51.
    S. Matthias, F. Muller, C. Jamois, R. B. Wehrspohn, and U. Goesele, Adv. Mater., 16, 2166 (2004).CrossRefGoogle Scholar
  52. 52.
    S. Matthias, F. Muller, and U. Goesele, J. Appl. Phys., 98, 023524 (2005).CrossRefGoogle Scholar
  53. 53.
    S. Matthias, F. Muller, J. Schilling, and U. Goesele, Appl. Phys. a-Mater, 80, 1391 (2005).CrossRefGoogle Scholar
  54. 54.
    E. S. Kooij, A. R. Rama, and J. J. Kelly, Surf. Sci., 370, 125 (1997).CrossRefGoogle Scholar
  55. 55.
    L. T. Canham, W. Y. Leong, M. I. J. Beale, T. I. Cox, and L. Taylor, Appl. Phys. Lett., 61, 2563 (1992).CrossRefGoogle Scholar
  56. 56.
    L. M. Peter, D. J. Riley, R. I. Wielgosz, P. A. Snow, R. V. Penty, I. H. White, and E. A. Meulenkamp, Thin Solid Films, 276, 123 (1996).CrossRefGoogle Scholar
  57. 57.
    L. M. Peter, D. J. Riley, and P. A. Snow, Electrochem. Commun., 2, 461 (2000).CrossRefGoogle Scholar
  58. 58.
    J. J. Kelly, E. S. Kooij, and D. Vanmaekelbergh, Langmuir, 15, 3666 (1999).CrossRefGoogle Scholar
  59. 59.
    C. J. Wang, B. L. Wehrenberg, C. Y. Woo, and P. Guyot-Sionnest, J. Phys. Chem. B, 108, 9027 (2004).CrossRefGoogle Scholar
  60. 60.
    E. S. Kooij, K. Butter, and J. J. Kelly, J. Electrochem. Soc., 145, 1232 (1998).CrossRefGoogle Scholar
  61. 61.
    D. Mills, M. Nahidi, and K. W. Kolasinski, Physica Status Solidi A, 202, 1422 (2005).CrossRefGoogle Scholar
  62. 62.
    E. Vazsonyi, E. Szilagyi, P. Petrik, Z. E. Horvath, T. Lohner, M. Fried, and G. Jalsovszky, Thin Solid Films, 388, 295 (2001).CrossRefGoogle Scholar
  63. 63.
    Y. Y. Song, Z. D. Gao, J. J. Kelly, and X. H. Xia, Electrochem. Solid State Lett., 8, C148 (2005).CrossRefGoogle Scholar
  64. 64.
    C.-H. Wang, Y.-Y. Song, J.-W. Zhao, and X.-H. Xia, Surf. Sci., 600, L38–L42 (2006).Google Scholar
  65. 65.
    E. S. Kooij, R. W. Despo, F. P. J. Mulders, and J. J. Kelly, J. Electroanal. Chem., 406, 139 (1996).CrossRefGoogle Scholar
  66. 66.
    E. S. Kooij, R. W. Despo, and J. J. Kelly, Appl. Phys. Lett., 66, 2552 (1995).CrossRefGoogle Scholar
  67. 67.
    M. J. Eddowes, J. Electroanal. Chem., 280, 297 (1990).CrossRefGoogle Scholar
  68. 68.
    E. K. Propst and P. A. Kohl, J. Electrochem. Soc., 141, 1006 (1994).CrossRefGoogle Scholar
  69. 69.
    E. A. Ponomarev and C. Levy-Clement, Electrochem. Solid State Lett., 1, 42 (1998).CrossRefGoogle Scholar
  70. 70.
    R. B. Wehrspohn, J. N. Chazalviel, F. Ozanam, and I. Solomon, Thin Solid Films, 297, 5 (1997).CrossRefGoogle Scholar
  71. 71.
    R. B. Wehrspohn, J. N. Chazalviel, and F. Ozanam, J. Electrochem. Soc., 145, 2958 (1998).CrossRefGoogle Scholar
  72. 72.
    V. Lehmann and S. Ronnebeck, J. Electrochem. Soc., 146, 2968 (1999).CrossRefGoogle Scholar
  73. 73.
    K. J. Chao, S. C. Kao, C. M. Yang, M. S. Hseu, and T. G. Tsai, Electrochem. Solid State Lett., 3, 489 (2000).CrossRefGoogle Scholar
  74. 74.
    R. B. Wehrspohn, F. Ozanam, and J. N. Chazalviel, J. Electrochem. Soc., 146, 3309 (1999).CrossRefGoogle Scholar
  75. 75.
    A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, and J. C. Oberlin, J. Electrochem. Soc., 138, 3450 (1991).CrossRefGoogle Scholar
  76. 76.
    M. Ligeon, F. Muller, R. Herino, F. Gaspard, J. C. Vial, R. Romestain, S. Billat, and A. Bsiesy, J. Appl. Phys., 74, 1265 (1993).CrossRefGoogle Scholar
  77. 77.
    S. Billat, F. Gaspard, R. Herino, M. Ligeon, F. Muller, F. Romestain, and J. C. Vial, Thin Solid Films, 263, 238 (1995).CrossRefGoogle Scholar
  78. 78.
    A. Bsiesy, B. Gelloz, F. Gaspard, and F. Muller, J. Appl. Phys., 79, 2513 (1996).CrossRefGoogle Scholar
  79. 79.
    A. Bsiesy, F. Muller, M. Ligeon, F. Gaspard, R. Herino, R. Romestain, and J. C. Vial, Phys. Rev. Lett, 71, 637 (1993).CrossRefGoogle Scholar
  80. 80.
    P. M. M. C. Bressers, J. W. J. Knapen, E. A. Meulenkamp, and J. J. Kelly, Appl. Phys. Lett., 61, 108 (1992).CrossRefGoogle Scholar
  81. 81.
    E. A. Meulenkamp, L. M. Peter, D. J. Riley, and R. I. Wielgosz, J. Electroanal. Chem., 392, 97 (1995).CrossRefGoogle Scholar
  82. 82.
    L. M. Peter and R. I. Wielgosz, Appl. Phys. Lett., 69, 806 (1996).CrossRefGoogle Scholar
  83. 83.
    G. H. Schoenmakers, R. Waagenaar, and J. J. Kelly, J. Electrochem. Soc., 142, L60 (1995).CrossRefGoogle Scholar
  84. 84.
    J. J. Kelly, E. S. Kooij, and E. A. Meulenkamp, Electrochim. Acta, 45, 561 (1999).CrossRefGoogle Scholar
  85. 85.
    Phys. Stat. Sol., 202, 8/9 (2005).Google Scholar
  86. 86.
    Phys. Stat. Sol., 204, 5/6 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Condensed Matter and Interfaces, Debye InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations