Advertisement

Wet Chemical Approaches for Chemical Functionalization of Semiconductor Nanostructures

  • Rabah Boukherroub
  • Sabine Szunerits
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

As there are already several reports and reviews dealing with chemical modification of crystalline and nanocrystalline surfaces in the literature [1–9], this book chapter is organized in several parts dealing with the progress made in nanocrystalline silicon and germanium surface modification with a special focus on: (1) methods for the preparation of hydrogen-terminated porous silicon, different strategies developed for organic layers formation, their characterization, and some examples of their applications; (2) techniques for porous germanium preparation, characterization, and surface modification; and (3) conclusions and perspectives.

Keywords

Porous Silicon Porous Layer Alkyl Halide Chemical Derivatization Nonradiative Recombination Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful for the permissions from Elsevier, ACS, and AIP for providing useful material in the chapter. The Centre National de la Recherche Scientifique (CNRS) and the Nord-Pas-de Calais region are gratefully acknowledged for financial support.

References

  1. 1.
    Chazalviel, J. N., Ozanam, F., Mater. Res. Soc. Symp. Proc. 1999, 536, 155–166.Google Scholar
  2. 2.
    Buriak, J. M., Chem. Commun. 1999, 1051–1060.Google Scholar
  3. 3.
    Stewart, M. P., Buriak, J. M., Adv. Mater. 2000, 12, 859–869.Google Scholar
  4. 4.
    Buriak, J. M., Chem. Rev. 2002, 102, 1272–1306.Google Scholar
  5. 5.
    Wayner, D. D. M., Wolkow, R. A., J. Chem. Soc., Perkin Trans. 2002, 2, 23–34.Google Scholar
  6. 6.
    Boukherroub, R., Curr. Opin. Solid State Mater. Sci. 2005, 9, 66–72.Google Scholar
  7. 7.
    Sailor, M. J., Link, J. R., Chem. Commun. 2005, 1375–1383.Google Scholar
  8. 8.
    Shirahata, N., Hozumi, A., Yonezawa, T., Chem. Rec. 2005, 5, 145–159.Google Scholar
  9. 9.
    Buriak, J. M., Phil. Trans. R. Soc. A 2006, 364, 217–225.Google Scholar
  10. 10.
    Canham, L. T., Appl. Phys. Lett. 1990, 57, 1046.Google Scholar
  11. 11.
    Uhlir, A., Bell Syst. Tech. J. 1956, 35, 333–347.Google Scholar
  12. 12.
    Fuller, C. S., Ditzenberger, J. A., J. Appl. Phys. 1957, 27, 544.Google Scholar
  13. 13.
    Turner, D. R., J. Electrochem. Soc. 1958, 105, 402.Google Scholar
  14. 14.
    Archer, R. J., J. Phys. Chem. Solids 1960, 14, 104.Google Scholar
  15. 15.
    Watanabe, Y., Sakai, T., Rev. Electron. Commun. Labs. 1971, 19, 899.Google Scholar
  16. 16.
    Watanabe, Y., Arita, Y., Yokoyama, T., Igarashi, Y., J. Electrochem. Soc. 1975, 122, 1351.Google Scholar
  17. 17.
    Arita, Y., Kato, K., Sudo, T., IEEE Trans. Electron Devices 1977, 24, 756.Google Scholar
  18. 18.
    Unagami, T., Kato, K., Jpn. J. Appl. Phys. 1977, 16, 1635.Google Scholar
  19. 19.
    Lehmann, V., Gösele, U., Appl. Phys. Lett. 1991, 58, 856.Google Scholar
  20. 20.
    Canham, L. T., Phys. World 1992, 5, 41.Google Scholar
  21. 21.
    Halimaoui, A., Oules, C., Bromchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Appl. Phys. Lett. 1991, 59, 304.Google Scholar
  22. 22.
    Cullis, A. G., Canham, L. T., Calcott, P. D. J., J. Appl. Phys. 1997, 82, 909–965.Google Scholar
  23. 23.
    Jung, K. H., Shih, S., Kuong, D. L., J. Electrochem. Soc. 1993, 140, 3046.Google Scholar
  24. 24.
    Halimaoui, A., In Porous Silicon Science and Technology, J.-C. Vial and J. Derrien Eds. Springer, Berlin, 1995, p. 33.Google Scholar
  25. 25.
    Canham, L. T., Groszek, A. J., J. Appl. Phys. 1992, 72, 1558.Google Scholar
  26. 26.
    Hérino, R., in “Properties of porous silicon” Datareview Ser. N°18; Canham: London, 1997; pp. 89–96.Google Scholar
  27. 27.
    Rieger, M. M., Kohl, P. A., J. Electrochem. Soc. 1995, 142, 1490.Google Scholar
  28. 28.
    Janshoff, A., Dancil, K.-P. S., Steinem, C., Greiner, D. P., Lin, V. S.-Y., Gurtner, C., Motesharei, K., Sailor, M. J., Ghadiri, M. R., J. Am. Chem. Soc. 1998, 120, 12108–12116.Google Scholar
  29. 29.
    Koshida, N., Koyama, H., Jpn. J. Appl. Phys. 1991, 30, L1221.Google Scholar
  30. 30.
    Lévy-Clément, C., Lagoubi, A., Ballutaud, D., Ozanam, F., Chazalviel, J. N., Neumann-Spallart, M., Appl. Surf. Sci. 1993, 65/66, 408.Google Scholar
  31. 31.
    Lévy-Clément, C., Lagoubi, A., Tomkiewicz, M., J. Electrochem. Soc. 1994, 141, 958.Google Scholar
  32. 32.
    Fathauer, R. W., George, T., Ksendzov, A., Vasquez, R. P., Appl. Phys. Lett. 1992, 60, 995.Google Scholar
  33. 33.
    Shih, S., Jung, K. H., Hsieh, T. Y., Sarathy, J., Campbell, J. C., Kwong, D. L., Appl. Phys. Lett. 1992, 60, 1863.Google Scholar
  34. 34.
    Kelly, M. T., Chun, J. K. M., Bocarsly, A. B., Appl. Phys. Lett. 1994, 64, 1693.Google Scholar
  35. 35.
    Chandler-Henderson, R. R., Coffer, J. L., Filessesler, L. A., J. Electrochem. Soc. 1994, 141, L166.Google Scholar
  36. 36.
    Belogorokhov, A. I., Gavrilov, S. A., Kashkarov, P. K., Belogorokhov, I. A., Phys. Stat. Sol. (a) 2005, 202, 1581–1585.Google Scholar
  37. 37.
    de smet, L. C. P. M., Zuilhof, H., Sudhölter, E. J. R., Lie, L. H., Houlton, A., Horrocks, B. R., J. Phys. Chem. B 2005, 109, 12020–12031.Google Scholar
  38. 38.
    Matsumoto, T., Masumoto, Y., Nakashima, S., Koshida, N., Thin Solid Films 1997, 297, 31–34.Google Scholar
  39. 39.
    Bateman, J. E., Eagling, R. D., Horrocks, B. R., Houlton, A., J. Phys. Chem. B 2000, 104, 5557–5565.Google Scholar
  40. 40.
    Ipatova, I. P., Chekalova-Luzina, O. P., Hess, K., J. Appl. Phys. 1998, 83, 814.Google Scholar
  41. 41.
    Lauerhaas, J. M., Sailor, M. J., Science 1993, 261, 1567–1568.Google Scholar
  42. 42.
    Lauerhaas, J. M., Sailor, M. J., Mater. Res. Soc. Symp. Proc. 1993, 298, 259–263.Google Scholar
  43. 43.
    Lopinski, G. P., Eves, B. J., Hul'ko, O., Mark, C., Patitsas, S. N., Boukherroub, R., Ward, T. R., Phys. Rev. B 2005, 71, 125308.Google Scholar
  44. 44.
    Joy, V. T., Daniel, M., CHEMPHYSCHEM 2002, 973–975.Google Scholar
  45. 45.
    Gun'ko, Y. K., Perova, T. S., Balakrishnan, S., Potapova, D. A., Moore, R. A., Astrova, E. V., Phys. Stat. Sol. (a) 2003, 197, 492–496.Google Scholar
  46. 46.
    Lavine, J. M., Sawan, S. P., Shieh, Y. T., Bellezza, A. J., Appl. Phys. Lett. 1993, 62, 1099–1101.Google Scholar
  47. 47.
    Hory, M. A., Hérino, R., Ligeon, M., Muller, F., Gaspard, F., Mihalcescu, I., Vial, J. C., Thin Solid Films 1995, 255, 200–203.Google Scholar
  48. 48.
    Seo, Y. H., Lee, H.-J., Jeon, H. I., Oh, D. H., Nahm, K. S., Lee, Y. H., Suh, E.-K., Lee, H. J., Kwang, Y. G., Appl. Phys. Lett. 1993, 62, 1812–1814.Google Scholar
  49. 49.
    Boukherroub, R., Petit, A., Loupy, A., Chazalviel, J.-N., Ozanam, F., ECS Conf. Proc. 2004, 2004–19, 13–22.Google Scholar
  50. 50.
    Guo, D.-J., Xiao, S.-J., Xia, B., Wei, S., Pei, J., Pan, Y., You, X.-Z., Gu, Z.-Z., Lu, Z., J. Phys. Chem. B 2005, 109, 20620–20628.Google Scholar
  51. 51.
    Holland, J. M., Stewart, M. P., Allen, M. J., Buriak, J. M., J. Solid State Chem. 1999, 147, 251–258.Google Scholar
  52. 52.
    Coulthard, I., Jiang, D.-T., Lorimer, J. W., Sham, T. K., Feng, X.-H., Langmuir 1993, 9, 3441–3445.Google Scholar
  53. 53.
    Tsuboi, T., Sakka, T., Ogata, Y. H., J. Appl. Phys. 1998, 83, 4501–4506.Google Scholar
  54. 54.
    Hilliard, J. E., Nayfeh, H. M., Nayfeh, M. H., J. Appl. Phys. 1995, 77, 4130.Google Scholar
  55. 55.
    Boukherroub, R., Wayner, D. D. M., Lockwood, D. J., Zargarian, D., Physica Status Solidi (a) 2003, 197, 476–481.Google Scholar
  56. 56.
    Boukherroub, R., Zargarian, D., Reber, R., Lockwood, D. J., Carty, A. J., Wayner, D. D. M., Appl. Surf. Sci. 2003, 217, 125–133.Google Scholar
  57. 57.
    Saghatelian, A., Buriak, J. M., Lin, V. S.-Y., Ghadiri, M. R., Tetrahedron 2001, 57, 5131–5136.Google Scholar
  58. 58.
    Lewis, L. N., J. Am. Chem. Soc. 1990, 112, 5998–6004.Google Scholar
  59. 59.
    Buriak, J. M., Allen, M. J., J. Am. Chem. Soc. 1998, 120, 1339–1340.Google Scholar
  60. 60.
    Buriak, J. M., Stewart, M. P., Geders, T. W., Allen, M. J., Choi, H. C., Smith, J., Raftery, D., Canham, L. T., J. Am. Chem. Soc. 1999, 121, 11491–11502.Google Scholar
  61. 61.
    Canham, L. T., Saunders, S. J., Heeley, P. B., Keir, A. M., Cox, T. I., Adv. Mater. 1994, 6, 865.Google Scholar
  62. 62.
    Buriak, J. M., Allen, M. J., J. Lumin. 1999, 80, 29–35.Google Scholar
  63. 63.
    Stewart, M. P., Buriak, J. M., Angew. Chem. Int. Ed. 1998, 37, 3257–3260.Google Scholar
  64. 64.
    Stewart, M. P., Buriak, J. M., J. Am. Chem. Soc. 2001, 123, 7821–7830.Google Scholar
  65. 65.
    Cicero, R. L., Linford, M. R., Chidsey, C. E. D., Langmuir 2000, 16, 5688.Google Scholar
  66. 66.
    Lambert, J. B., Zhao, Y., Wu, H., J. Org. Chem. 1999, 64, 2729.Google Scholar
  67. 67.
    Lambert, J. B., Tetrahedron 1990, 46, 2677.Google Scholar
  68. 68.
    Bateman, J. E., Eagling, R. D., Worrall, D. R., Horrocks, B. R., Houlton, A., Angew. Chem. Int. Ed. 1998, 37, 2683–2685.Google Scholar
  69. 69.
    Boukherroub, R., Morin, S., Wayner, D. D. M., Lockwood, D. J., Phys. Stat. Sol. (a) 2000, 182, 117–121.Google Scholar
  70. 70.
    Boukherroub, R., Morin, S., Wayner, D. D. M., Lockwood, D. J., Solid State Commun. 2001, 118, 319–323.Google Scholar
  71. 71.
    Boukherroub, R., Morin, S., Wayner, D. D. M., Bensebaa, F., Sproule, G. I., Baribeau, J.-M., Lockwood, D. J., Chem. Mater. 2001, 13, 2002–2011.Google Scholar
  72. 72.
    Wojtyk, J. T. C., Morin, K. A., Boukherroub, R., Wayner, D. D. M., Langmuir 2002, 18, 6081–6087.Google Scholar
  73. 73.
    Hu, Y. F., Boukherroub, R., Sham, T. K., J. Electr. Spectrosc. Related Phenom. 2004, 135, 143–147.Google Scholar
  74. 74.
    Boukherroub, R., Wojtyk, J. T. C., Wayner, D. D. M., Lockwood, D. J., J. Electrochem. Soc. 2002, 149, H59–H63.Google Scholar
  75. 75.
    Fan, H. J., Kuok, M. H., Ng, S. C., Boukherroub, R., Lockwood, D. J., Appl. Phys. Lett. 2001, 79, 4521–4523.Google Scholar
  76. 76.
    Fan, H. J., Kuok, M. H., Ng, S. C., Boukherroub, R., Baribeau, J.-M., Fraser, J. W., Lockwood, D. J., Phys. Rev. B 2002, 65, 165330.Google Scholar
  77. 77.
    Fan, H. J., Kuok, M. H., Ng, S. C., Boukherroub, R., Lockwood, D. J., Semicond. Sci. Technol. 2002, 17, 692–695.Google Scholar
  78. 78.
    Fan, H. J., Kuok, M. H., Ng, S. C., Lim, H. S., Liu, N. N., Boukherroub, R., Lockwood, D. J., J. Appl. Phys. 2003, 94, 1243–1247.Google Scholar
  79. 79.
    Linford, M. R., Fenter, P., Eisenberger, P. M., Chidsey, C. E. D., J. Am. Chem. Soc. 1995, 117, 3145–3155.Google Scholar
  80. 80.
    Boukherroub, R., Lockwood, D. J., Wayner, D. D. M., Canham, L. T., Mater. Res. Soc. Symp. Proc. 2001, 638, F11.Google Scholar
  81. 81.
    Boukherroub, R., Wayner, D. D. M., Sproule, G. I., Lockwood, D. J., Canham, L. T., Nano Lett. 2001, 1, 713–717.Google Scholar
  82. 82.
    Maruyama, T., Ohtani, S., Appl. Phys. Lett. 1995, 65, 1346–1348.Google Scholar
  83. 83.
    Boukherroub, R., Wayner, D. D. M., Lockwood, D. J., Appl. Phys. Lett. 2002, 81, 601.Google Scholar
  84. 84.
    Vial, J. C., Bsiesy, A., Gaspard, F., Hérino, R., Ligeon, M., Muller, F., Romenstain, R., Macfarlane, R. M., Phys. Rev. B 1992, 45, 14171.Google Scholar
  85. 85.
    Muller, F., Hérino, R., Ligeon, M., Gaspard, F., Romenstain, R., Vial, J. C., Bsiesy, A., J. Lumin. 1993, 57, 283.Google Scholar
  86. 86.
    Geobaldo, F., Rivolo, P., Ugliengo, P., Garrone, E., Sens. Actuat. B 2004, 100, 29–32.Google Scholar
  87. 87.
    Boukherroub, R., Petit, A., Loupy, A., Chazalviel, J. N., Ozanam, F., J. Phys. Chem. B 2003, 107, 13459–13462.Google Scholar
  88. 88.
    Schmeltzer, J. M., Porter, L. A., Stewart, M. P., Buriak, J. M., Langmuir 2002, 18, 2971–2974.Google Scholar
  89. 89.
    Lambert, J. B., Zhao, Y., J. Am. Chem. Soc. 1996, 118, 7867.Google Scholar
  90. 90.
    Dubois, T., Ozanam, F., Chazalviel, J.-N., ECS Conf. Proc. 1997, 97–7, 296–310.Google Scholar
  91. 91.
    Ozanam, F., Vieillard, C., Warntjes, M., Dubois, T., Pauly, M., Chazalviel, J. N., Can. J. Chem. Eng. 1998, 76, 1020–1026.Google Scholar
  92. 92.
    Song, J. H., Sailor, M. J., J. Am. Chem. Soc. 1998, 120, 2376–2381.Google Scholar
  93. 93.
    Song, J. H., Sailor, M. J., Inorg. Chem. 1999, 38, 1498–1503.Google Scholar
  94. 94.
    Kim, N. Y., Laibinis, P. E., J. Am. Chem. Soc. 1999, 121, 7162–7163.Google Scholar
  95. 95.
    Kim, N. Y., Laibinis, P. E., J. Am. Chem. Soc. 1998, 120, 4516–4517.Google Scholar
  96. 96.
    Fellah, S., Boukherroub, R., Ozanam, F., Chazalviel, J.-N., Langmuir 2004, 20, 6359.Google Scholar
  97. 97.
    Chatgilialoglu, C., Chem. Rev. 1995, 95, 1229.Google Scholar
  98. 98.
    Gurtner, C., Wun, A. W., Sailor, M. J., Angew. Chem. Int. Ed. 1999, 38, 1966–1968.Google Scholar
  99. 99.
    Canaria, C. A., Lees, I. N., Wun, A. W., Miskelly, G. M., Sailor, M. J., Inorg. Chem. Commun. 2002, 5, 560–564.Google Scholar
  100. 100.
    Lees, I. N., Lin, L., Canaria, C. A., Gurtner, C., Sailor, M. J., Miskelly, G. M., Langmuir 2003, 19, 9812–9817.Google Scholar
  101. 101.
    Song, J. H., Sailor, M. J., Inorg. Chem. 1998, 37, 3355–3360.Google Scholar
  102. 102.
    Andsager, D., Hillard, J., Hetrick, J. M., AbuHassan, L. H., Plisch, M., Nayfeh, M. H., J. Appl. Phys. 1993, 74, 4783–4785.Google Scholar
  103. 103.
    Andsager, D., Hillard, J., Nayfeh, M. H., Appl. Phys. Lett. 1994, 64, 1141–1143.Google Scholar
  104. 104.
    Robins, E. G., Stewart, M. P., Buriak, J. M., Chem. Commun. 1999, 2479–2480.Google Scholar
  105. 105.
    Jouikov, V., Salaheev, G., Electrochim. Acta 1996, 41, 2623–2629.Google Scholar
  106. 106.
    Jouikov, V. V., Russ. Chem. Rev. 1997, 66, 509.Google Scholar
  107. 107.
    Mattei, G., Valentini, V., J. Am. Chem. Soc. 2003, 125, 9608–9609.Google Scholar
  108. 108.
    Blackwood, D. J., Bin Mohamed Akber, M. F., J. Electrochem. Soc. 2006, 153, G976–G980.Google Scholar
  109. 109.
    Wang, D., Buriak, J. M., Surf. Sci. 2005, 590, 154–161.Google Scholar
  110. 110.
    Warntjes, M., Vieillard, C., Ozanam, F., Chazalviel, J. N., J. Electrochem. Soc. 1995, 142, 4138–4142.Google Scholar
  111. 111.
    Vieillard, C., Warntjes, M., Ozanam, F., Chazalviel, J. N., ECS Conf. Proc. 1995, 95–25, 250–258.Google Scholar
  112. 112.
    Lee, E. J., Ha, J. S., Sailor, M. J., J. Am. Chem. Soc. 1995, 117, 8295–8296.Google Scholar
  113. 113.
    Lee, E. J., Bitner, T. W., Ha, J. S., Shane, M. J., Sailor, M. J., J. Am. Chem. Soc. 1996, 118, 5375–5382.Google Scholar
  114. 114.
    Glass, J. A., Wovchko, E. A., Yates, J. T., Surf. Sci. 1995, 338, 125–137.Google Scholar
  115. 115.
    Kim, N. Y., Laibinis, P. E., J. Am. Chem. Soc. 1997, 119, 2297–2298.Google Scholar
  116. 116.
    Eagling, R. D., Bateman, J. E., Goodwin, N. J., Henderson, W., Horrocks, B. R., Houlton, A., J. Chem. Soc. Dalton Trans. 1998, 1273–1275.Google Scholar
  117. 117.
    Lee, E. J., Ha, J. S., Sailor, M. J., Mater. Res. Soc. Symp. Proc. 1995, 358, 387.Google Scholar
  118. 118.
    Corriu, R. J. R., Guerin, C., Moreau, J. J. E., Top. Stereochem. 1984, 15, 43.Google Scholar
  119. 119.
    Harper, T. F., Sailor, M. J., J. Am. Chem. Soc. 1997, 119, 6943–6944.Google Scholar
  120. 120.
    Becker, H.-D., In The Chemistry of the Quinonoid Compounds, S. Patai, Ed., John Wiley & Sons: London, 1974, Vol. I, pp. 335–423.Google Scholar
  121. 121.
    Li, Y.-H., Buriak, J. M., Inorg. Chem. 2006, 45, 1096–1102.Google Scholar
  122. 122.
    Belhousse, S., Cheraga, H., Gabouze, N., Outamzabet, R., Sens. Actuat. B 2004, 100, 250–255.Google Scholar
  123. 123.
    Cheraga, H., Belhousse, S., Gabouze, N., Appl. Surf. Sci. 2004, 238, 495–500.Google Scholar
  124. 124.
    Belhousse, S., Gabouze, N., Cheraga, H., Henda, K., Thin Solid Films 2005, 482, 253–257.Google Scholar
  125. 125.
    Gabouze, N., Belhousse, S., Cheraga, H., Phys. Stat. Sol. (C) 2005, 2, 3449–3452.Google Scholar
  126. 126.
    Lie, L. H., Patole, S. N., Hart, E. R., Houlton, A., Horrocks, B. R., J. Phys. Chem. B 2002, 116, 113–120.Google Scholar
  127. 127.
    Xia, B., Xiao, S.-J., Wang, J., Guo, D.-J., Thin Solid Films 2005, 474, 306–309.Google Scholar
  128. 128.
    Yoon, M. S., Ahn, K. H., Cheung, R. W., Sohn, H., Link, J. R., Cunin, F., Sailor, M. J., Chem. Comm. 2003, 680–681.Google Scholar
  129. 129.
    Cunin, F., Schmedake, T. A., Link, J. R., Li, Y. Y., Koh, J., Bhatia, S. N., Sailor, M. J., Nat. Mater. 2002, 1, 39.Google Scholar
  130. 130.
    Schmedake, T. A., Cunin, F., Link, J. R., Sailor, M. J., Adv. Mater. 2002, 14, 1270.Google Scholar
  131. 131.
    Lie, L. H., Patole, S. N., Pike, A. R., Ryder, L. C., Connolly, B. A., Ward, A. D., Tuite, E. M., Houlton, A., Horrocks, B. R., Faraday Discuss. 2004, 125, 235–249.Google Scholar
  132. 132.
    Pike, A. R., Lie, L. H., Eagling, R. D., Ryder, L. C., Patole, S. N., Connolly, B. A., Horrocks, B. R., Houlton, A., Angew. Chem. Int. Ed. 2002, 41, 615.Google Scholar
  133. 133.
    De Stefano, L., Rotiroti, L., Rea, I., Moretti, L., Di Francia, G., Massera, E., Lamberti, A., Arcari, P., Sanges, C., Rendina, I., J. Opt. A: Pure Appl. Opt. 2006, 8, S540–S544.Google Scholar
  134. 134.
    Hart, B. R., Létant, S. E., Kane, S. R., Hadi, M. Z., Shields, S. J., Reynolds, J. G., Chem. Comm. 2003, 322–323.Google Scholar
  135. 135.
    Létant, S. E., Hart, B. R., Kane, S. R., Hadi, M. Z., Shields, S. J., Reynolds, J. G., Adv. Mater. 2004, 16, 689–693.Google Scholar
  136. 136.
    Schwartz, M. P., Cunin, F., Cheung, R. W., Sailor, M. J., Phys. Stat. Sol. (a) 2005, 202, 1380–1384.Google Scholar
  137. 137.
    Canham, L. T., Adv. Mater. 1995, 7, 1033.Google Scholar
  138. 138.
    Anderson, S. H. C., Elliott, H., Wallis, D. J., Canham, L. T., Powell, J. J., Phys. Stat. Sol. (a) 2003, 197, 331–335.Google Scholar
  139. 139.
    Canham, L. T., Reeves, C. L., Newey, J. P., Houlton, M. R., Cox, T. I., Buriak, J. M., Stewart, M. P., Adv. Mater. 1999, 11, 1505–1507.Google Scholar
  140. 140.
    Choi, H. C., Buriak, J. M., Chem. Mater. 2000, 12, 2151–2156.Google Scholar
  141. 141.
    Green, W. H., Lee, E. J., Lauerhaas, J. M., Bitner, T. W., Sailor, M. J., Appl. Phys. Lett. 1995, 67, 1468.Google Scholar
  142. 142.
    Koshida, N., Kadokura, J., Gelloz, B., Boukherroub, R., Wayner, D. D. M., Lockwood, D. J., ECS Conf. Proc. 2002, 2002-9, 195.Google Scholar
  143. 143.
    Gelloz, B., Sano, H., Boukherroub, R., Wayner, D. D. M., Lockwood, D. J., Koshida, N., Appl. Phys. Lett. 2003, 83, 2342–2344.Google Scholar
  144. 144.
    Gelloz, B., Sano, H., Boukherroub, R., Wayner, D. D. M., Lockwood, D. J., Koshida, N., Physica Status Solidi C 2005, 2, 3273–3277.Google Scholar
  145. 145.
    Gelloz, B., Nakagawa, T., Koshida, N., Appl. Phys. Lett. 1998, 73, 2021.Google Scholar
  146. 146.
    Gelloz, B., Koshida, N., J. Appl. Phys. 2000, 88, 4319.Google Scholar
  147. 147.
    Wei, J., Buriak, J. M., Siuzdak, G., Nature 1999, 399, 243.Google Scholar
  148. 148.
    Shen, Z., Thomas, J. J., Averbuj, C., Broo, K. M., Engerlhard, J. E., Finn, M. G., Siuzdak, G., Anal. Chem, 2001, 73, 612–619.Google Scholar
  149. 149.
    Kruse, R. A., Li, X., Bohn, P. W., Sweedler, J. V., Anal. Chem, 2001, 73, 3639–3645.Google Scholar
  150. 150.
    Alimpiev, S., Nikiforov, S., Karavanskii, V. A., Minton, T., Sunner, J., J. Chem. Phys. 2001, 115, 1891–1901.Google Scholar
  151. 151.
    Tuomikoski, S., Huikko, K., Grigoras, K., Östman, P., Kostiainen, R., Baumann, M., Abian, J., Kotiaho, T., Franssila, S., Lab Chip 2002, 2, 247–253.Google Scholar
  152. 152.
    Meng, J.-C., Averbuj, C., Lewis, W. G., Siuzdak, G., Finn, M. G., Angew. Chem. Int. Ed. 2004, 116, 1275–1280.Google Scholar
  153. 153.
    Gao, T., Gao, J., Sailor, M. J., Langmuir 2002, 18, 9953–9957.Google Scholar
  154. 154.
    De Stefano, L., Moretti, L., Lamberti, A., Longo, O., Rocchia, M., Rossi, A. M., Arcari, P., Rendina, I., IEEE Trans. Trans. Nanotechnol. 2004, 3, 49–54.Google Scholar
  155. 155.
    Létant, S. E., Kane, S. R., Hart, B. R., Hadi, M. Z., Cheng, T.-C., Rastogi, V. K., Reynolds, J. G., Chem. Commun. 2005, 851–853.Google Scholar
  156. 156.
    Anglin, E. J., Schwartz, M. P., Ng, V. P., Perelman, L. A., Sailor, M. J., Langmuir 2004, 20, 11264–11269.Google Scholar
  157. 157.
    Bayliss, S., Buckberry, L., Harris, P., Rousseau, C., Thin Solid Films 1997, 297, 308–310.Google Scholar
  158. 158.
    Sendova-Vassileva, M., Tzenov, N., Dimova-Malinovska, D., Rosenbauer, M., Stutzmann, M., Josepovits, K. V., Thin Solid Films 1995, 255, 282–285.Google Scholar
  159. 159.
    Miyazaki, S., Sakamoto, K., Shiba, K., Hirose, M., Thin Solid Films 1995, 255, 99–102.Google Scholar
  160. 160.
    Maroun, F., Ozanam, F., Chazalviel, J.-N., J. Phys. Chem. B 1999, 103, 5280.Google Scholar
  161. 161.
    Bayliss, S., Zhang, Q., Harris, P., Appl. Surf. Sci. 1996, 102, 390–394.Google Scholar
  162. 162.
    Chang, S.-S., Hummel, R. E., J. Lumin. 2000, 86, 33–38.Google Scholar
  163. 163.
    Karavanskii, V. A., Lomov, A. A., Sutyrin, A. G., Bushuev, V. A., Loikho, N. N., Melnik, N. N., Zavaritskaya, T. N., Bayliss, S., Phys. Stat. Sol. (a) 2003, 197, 144–149.Google Scholar
  164. 164.
    Karavanskii, V. A., Lomov, A. A., Sutyrin, A. G., Bushuev, V. A., Loikho, N. N., Melnik, N. N., Zavaritskaya, T. N., Bayliss, S., Thin solid-films 2003, 437, 290–296.Google Scholar
  165. 165.
    Lomov, A. A., Bushuev, V. A., Karavanskii, V. A., Bayliss, S., Crystallogr. Rep. 2003, 48, 326–334.Google Scholar
  166. 166.
    Kartopu, G., Bayliss, S. C., Karavanskii, V. A., Curry, R. J., Turan, R., Sapelkin, A. V., J. Lumin. 2003, 101, 275–283.Google Scholar
  167. 167.
    Huber, H., Assmann, W., Karamian, S. A., Mücklich, A., Prusseit, W., Gazis, E., Grötzschel, R., Kokkoris, M., Kossionidis, E., Mieskes, H. D., Vlastou, R., Nuclear Instr. Methods Phys. Res. B 1997, 122, 542–546.Google Scholar
  168. 168.
    Choi, H., Buriak, J. M., Chem. Comm. 2000, 1669–1670.Google Scholar
  169. 169.
    Chen, J. H., Pang, D., Wickboldt, P., Cheong, H. M., Paul, W., J. Non-Cryst. Solids 1996, 198–200, 128–131.Google Scholar
  170. 170.
    Shieh, J., Chen, H. L., Ko, T. S., Cheng, H. C., Chu, T. C., Adv. Mater. 2004, 16, 1121–1124.Google Scholar
  171. 171.
    Hu, J., Odom, T. W., Lieber, C. M., Acc. Chem. Res. 1999, 32, 435–445.Google Scholar
  172. 172.
    Rao, C. N. R., Deepak, F. L., Gundiah, G., Govindaraj, A., Progress in Solid State Chem. 2003, 31, 5–147.Google Scholar
  173. 173.
    Míguez, H., Meseguer, F., López, C., Holgado, M., Andreasen, G., Mifsud, A., Fornés, V., Langmuir 2000, 16, 4405.Google Scholar
  174. 174.
    Míguez, H., Chomski, E., García-Santamaría, F., Ibisate, M., John, S., López, C., Meseguer, F., Mondia, J. P., Ozin, G. A., Toader, O., van Driel, H. M., Adv. Mater. 2001, 13, 1634.Google Scholar
  175. 175.
    van Vugt, L. K., van Driel, A. F., Tjerkstra, R. W., Bechger, L., Vos, W. L., Vanmaekelbergh, D., Kelly, J. J., Chem. Comm. 2002, 2054–2055.Google Scholar
  176. 176.
    Gardelis, S., Rimmer, J. S., Dawson, P., Hamilton, B., Kubiak, R. A., Whall, T. E., Parker, E. H. C., Appl. Phys. Lett. 1991, 59, 2118.Google Scholar
  177. 177.
    Kolic, K., Borne, E., Garcia Perez, M. A., Sibai, A., Gauthier, R., Laugier, A., Thin Solid Films 1995, 255, 279–281.Google Scholar
  178. 178.
    Schoisswohl, M., Cantin, J. L., Chamarro, M., von Bardeleben, H. J., Morgenstern, T., Bugiel, E., Kissinger, W., Andreu, R. C., Thin Solid Films 1996, 276, 92–95.Google Scholar
  179. 179.
    Buttard, D., Schoisswohl, M., Cantin, J. L., von Bardeleben, H. J., Thin solid-films 1997, 297, 233–236.Google Scholar
  180. 180.
    Kartopu, G., Bayliss, S. C., Ekinci, Y., Parker, E. H. C., Naylor, T., Phys. Stat. Solidi A 2003, 197, 263.Google Scholar
  181. 181.
    Kartopu, G., Ekinci, Y., Thin Solid Films 2005, 473, 213–217.Google Scholar
  182. 182.
    Ksendzov, A., Fathauer, R. W., George, T., Pike, W. T., Vasquez, R. P., Taylor, A. P., Appl. Phys. Lett. 1993, 63, 200.Google Scholar
  183. 183.
    Vyatkin, A. F., Linnross, J., Lalic, N., Rosler, M., Phys. Low-Dimens. Struct. 1997, 5/6, 89.Google Scholar
  184. 184.
    Schoisswohl, M., Cantin, J. L., Chamarro, M., von Bardeleben, H. J., Morgenstern, T., Bugiel, E., Kissinger, W., Andreu, R. C., Phys. Rev. B 1995, 52, 11898.Google Scholar
  185. 185.
    Unal, B., Parkinson, M., Bayliss, S. C., Naylor, T., Schröder, D., J. Porous Mater. 2000, 7, 143–146.Google Scholar
  186. 186.
    Bsiesy, A., Vial, J. C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romenstain, R., Wasiela, A., Halimaoui, A., Bomchil, G., Surf. Sci. 1991, 254, 195.Google Scholar
  187. 187.
    Gupta, P., Dillon, A. C., Bracker, A. S., George, S. M., Surf. Sci. 1991, 245, 360.Google Scholar
  188. 188.
    Choi, K., Buriak, J. M., Langmuir 2000, 16, 7737–7741.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Biointerfaces GroupInterdisciplinary Research Institute (IRI), FRE 2963, IRI-IEMN59652 Villeneuve d’AscqFrance
  2. 2.INPG, LEMI-ENSEEGSaint Martin d’HerèsFrance

Personalised recommendations